• Title/Summary/Keyword: 3-D Contact

Search Result 990, Processing Time 0.028 seconds

The Effect of Tool Geometry on the Mechanical Properties in a Friction Stir Welded Lap Joint between an Al Alloy and Zn-coated Steel (알루미늄 합금과 아연도금강판의 이종 겹치기 마찰교반접합에서 기계적성질에 미치는 Tool Geometry의 영향)

  • Kim, Nam-Kyu;Kim, Byung-Chul;Jung, Byung-Hoon;Song, Sang-Woo;Nakata, K.;Kang, Chung-Yun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.533-542
    • /
    • 2010
  • The specific motivation for joining an Al alloy and Zn-coated steel arises from the need to save fuel consumption by weight reduction and to enhance the durability of vehicle structures in the automobile industry. In this study, the lap joining A6K31 Al alloy (top) and SGARC340 Zn-coated steel (bottom) sheets with a thickness of 1.0 mm and 0.8 mm, respectively, was carried out using the friction stir weld (FSW) technique. The probe of a tool did not contact the surface of the lower Zn-coated steel sheet. The friction stir welding was carried out at rotation speeds of 1500 rpm and travel speeds of 80~200 mm/min. The effects of tool geometry and welding speed on the mechanical properties and the structure of a joint were investigated. The tensile properties for the joints welded with a larger tool were better than those for the joints done with a smaller tool. A good correlation between the tensile load and area of the welded region were observed. The bond strength using a larger tool (M4 and M3) decreased with an increase in welding speed. Most fractures occurred along the interface between the Zn-coated steel and the Al alloy. However, in certain conditions with a lower welding speed, fractures occurred at the A6K31 Al alloy.

Contact Microscopy by Using Soft X-ray Radiation from Iodine Laser Produced Plasma (옥소레이저 플라즈마에서 발생된 연 X-선을 이용한 밀착현미경기술)

  • 최병일;김동환;공홍진;이상수
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.46-51
    • /
    • 1990
  • Laser plasma was generated by a 1GW iodine photodissociation laser ($\lambda$=1.315$\mu\textrm{m}$, E=12.7J) whose output beam was focused on a molybdenum target surface. The experiment was conducted in a vacuum chamber under 1D-sTorr and several tens of laser shooting were necessary for sufficient exposure for the PBS resist of 111m thickness. Aluminium was coated on the top of the resist by 0.1$\mu\textrm{m}$ thickness which acts as an X-ray filter to cut off the visible and the ultraviolet lights. A bio-specimen was put directly on the aluminium coated resist and located at a distance of 3 cm from the X-ray source. The replicas of a steel mesh, spider's web. and a red blood cell were obtained by this technique and were observed by Nomarski microscope and SEM. The limitation of its resolution is determined by the X-ray source size and Fresnel diffraction effect, and its theoretical prediction is well matched with the experimental results. In this experiment, a resolution better than 0.1$\mu\textrm{m}$ could be obtained. ained.

  • PDF

Konjac Glucomannan Derived Carbon Aerogels for Multifunctional Applications

  • Lian, Jie;Li, Jiwei;Wang, Liang;Cheng, Ru;Tian, Xiuquan;Li, Xue;Zhou, Jian;Duan, Tao;Zhu, Wenkun
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850113.1-1850113.11
    • /
    • 2018
  • Environmental and energy issues have always been a hot topic of global research. Oil leakage has caused great damage to the environment, affecting a wide area and it is difficult to clean up. In most cases, carbon-based adsorbents are typically utilized to remove oil spills because of their economic benefits and high adsorbent efficiency. At the same time, its excellent material properties can also be used for the preparation of supercapacitors. In this paper, the carbon aerogels were prepared by the one-step method. The prepared materials endowed a 3D network structure with a huge number of micropores and mesoporous, and the material is light-weight, stable, hydrophobic and has affinity for oil (17.02 g/g) to the KGM carbon aerogel. Through the physicchemical characterization, the KGM carbon aerogel shows specific surface area is $689m^2/g$, high water contact angle ($136.64^{\circ}$) and excellent reusability (more than 15 cycle times). In addition, we also discussed the electrochemical properties of the material and obtained the specific electrical capacity of 139 F/g under the condition of 1 A/g.

Nonlinear Dynamic Analysis of Steel Lazy Wave Riser using Lumped Mass Line Model (집중질량 라인모델을 이용한 Steel Lazy Wave Riser의 비선형 동적 해석)

  • Oh, Seunghoon;Jung, Jae-Hwan;Park, Byeongwon;Kwon, Yong-Ju;Jung, Dongho
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.400-410
    • /
    • 2019
  • In this study, the numerical code for the 3D nonlinear dynamic analysis of an SLWR (Steel Lazy Wave Riser) was developed using the lumped mass line model in a FORTRAN environment. Because the lumped mass line model is an explicit method, there is no matrix operation. Thus, the numerical algorithm is simple and fast. In the lumped mass line model, the equations of motion for the riser were derived by applying the various forces acting on each node of the line. The applied forces at the node of the riser consisted of the tension, shear force due to the bending moment, gravitational force, buoyancy force, riser/ground contact force, and hydrodynamic force based on the Morison equation. Time integration was carried out using a Runge-Kutta fourth-order method, which is known to be stable and accurate. To validate the accuracy of the developed numerical code, simulations using the commercial software OrcaFlex were carried out simultaneously and compared with the results of the developed numerical code. To understand the nonlinear dynamic characteristics of an SLWR, dynamic simulations of SLWRs excited at the hang-off point and of SLWRs in regular waves were carried out. From the results of these dynamic simulations, the displacements at the maximum bending moments at important points of the design, like the hang-off point, sagging point, hogging points, and touch-down point, were observed and analyzed.

Comparison of SBR/BR Blend Compound and ESBR Copolymer Having Same Butadiene Contents

  • Hwang, Kiwon;Lee, Jongyeop;Kim, Woong;Ahn, Byungkyu;Mun, Hyunsung;Yu, Eunho;Kim, Donghyuk;Ryu, Gyeongchan;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.54-60
    • /
    • 2019
  • The rapid development of the automobile industry is an important factor that led to the dramatic development of synthetic rubber. The tread part of tire that comes in direct contact with the road surface is related to the service life of the tire. Rubber compounds used in tire treads are often blended with SBR (styrene-butadiene rubber) and BR (butadiene rubber) to satisfy physical property requirements. However, when two or more kinds of rubber are blended, phase separation and silica dispersion problems may occur due to non-uniform mixing of the rubber. Therefore, in this study, we synthesized an SBR copolymer with the same composition as that of a typical SBR/BR blend compound by controlling butadiene content during ESBR (emulsion styrene-butadiene rubber) synthesis. Subsequently, silica filled compounds were manufactured using the synthesized ESBR, and their mechanical properties, dynamic viscoelasticity, and crosslinking density were compared with those of the SBR/BR blended compound. When the content of butadiene was increased in the silica filled compound, the cure rate accelerated due to an increased number of allylic positions, which typically exhibit higher reactivity. However, the T-2 compound with increased butadiene content by synthesis less likely to show an increase in crosslink density due to poor silica dispersion. In addition, the T-3 compound containing high cis BR content showed high crosslink density due to its monosulfide crosslinking structure. Because of the phase separation, SBR/BR blend compounds were easily broken and showed similar $M_{100%}$ and $M_{300%}$ values as those of other compounds despite their high crosslink density. However, the developed blend showed excellent abrasion resistance due to the high cis-1,4 butadiene content and low rolling resistance due to the high crosslink density.

Experimental Study on the Wear Effects of a Brush Seal in DN 2.5million in a 250℃ High - temperature Steam Environment (DN 250만 250℃고온 스팀환경에서 운전되는 단열 브러쉬 실 마모효과에 관한 실험적 연구)

  • Ha, YunSeok;Ha, TaeWoong;Lee, YoungBok
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.99-105
    • /
    • 2019
  • This study presents an experimental investigation of the wear and oxidation of the bristles of a brush seal in a super-heated steam environment. We construct a model reflecting normal force and radial interference to predict the amount of wear. To monitor the volume loss of the bristle induced by the swirl phenomenon of the rotor, we measure the clearance between the rotor and the brush seal by using a non-contact 3-D device. We calculate the area by using the area-wise measurement method. Considering the obvious brush seal wear variables, we use two disks with different roughness($Ra=0.1{\mu}m$ and $100{\mu}m$) to determine the effect of roughness on wear. Considering an actual steam turbine, we utilize a steam generator and super-heater to generate a working fluid (0.95MPa, 523.15K) that has high kinetic energy. We observe the abrasion of the bristles in the hot steam environment through a scanning electron microscope image. This study also conducted energy dispersive X-ray (EDX) analysis for a qualitative evaluation of local chemistry. The results indicate that the wear and elimination of bristles occur on the disk with high roughness, and the weight increases due to oxidation. Furthermore these results, reveal that the bristle oxidation is accelerated more under super-heated steam conditions than under conditions without steam.

Relationships between the upper central incisor crown forms and degree of labial inclination, overbite, and overjet in Japanese young adults

  • Kurita, Takeshi;Mizuhashi, Fumi;Sato, Toshihide;Koide, Kaoru
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.338-343
    • /
    • 2020
  • PURPOSE. The present study aimed to investigate the relationships between the crown form of the upper central incisor and their labial inclination, overbite, and overjet. MATERIALS AND METHODS. Maxillary and mandibular casts of 169 healthy dentitions were subjected to 3D dental scanning, and analyzed using CAD software. The crown forms were divided into tapered, square, and ovoid based on the mesiodistal dimensions at 20% of the crown height to that at 40%. The degree of labial inclination of the upper central incisor was defined as the angle between the occlusal plane and the line connecting the incisal edge and tooth cervix. The incisal edges of the right upper and lower central incisor that in contact with lines parallel to the occlusal plane were used to determine the overbite and overjet. One-way ANOVA was performed to compare the labial inclination, overbite, and overjet among the crown forms. RESULTS. The crown forms were classified into three types; crown forms with a 20%/40% dimension ratio of 1.00±0.01 were defined as square, >1.01 as tapered, and <0.99 as ovoid. The labial inclination degree was the greatest in tapered and the least in square. Both overbite and overjet in tapered and ovoid were higher than those in square. CONCLUSION. Upper central incisor crown forms were related to their labial inclination, overbite, and overjet. It was suggested that the labial inclination, overbite, and overjet should be taken into consideration for the prosthetic treatment or restoring the front teeth crowns.

Necrotrophic Fungus Pyrenophora tritici-repentis Triggers Expression of Multiple Resistance Components in Resistant and Susceptible Wheat Cultivars

  • Andersen, Ethan J.;Nepal, Madhav P.;Ali, Shaukat
    • The Plant Pathology Journal
    • /
    • v.37 no.2
    • /
    • pp.99-114
    • /
    • 2021
  • Tan spot of wheat, caused by Pyrenophora tritici-repentis (Ptr), results in a yield loss through chlorosis and necrosis of healthy leaf tissue. The major objective of this study was to compare gene expression in resistant and susceptible wheat cultivars after infection with Ptr ToxA-producing race 2 and direct infiltration with Ptr ToxA proteins. Greenhouse experiments included exposure of the wheat cultivars to pathogen inoculum or direct infiltration of leaf tissue with Ptr-ToxA protein isolate. Samples from the experiments were subjected to RNA sequencing. Results showed that ToxA RNA sequences were first detected in samples collected eight hours after treatments indicating that upon Ptr contact with wheat tissue, Ptr started expressing ToxA. The resistant wheat cultivar, in response to Ptr inoculum, expressed genes associated with plant resistance responses that were not expressed in the susceptible cultivar; genes of interest included five chitinases, eight transporters, five pathogen-detecting receptors, and multiple classes of signaling factors. Resistant and susceptible wheat cultivars therefore differed in their response in the expression of genes that encode chitinases, transporters, wall-associated kinases, permeases, and wound-induced proteins, among others. Plants exposed to Ptr inoculum expressed transcription factors, kinases, receptors, and peroxidases, which are not expressed as highly in the control samples or samples infiltrated with ToxA. Several of the differentially expressed genes between cultivars were found in the Ptr resistance QTLs on chromosomes 1A, 2D, 3B, and 5A. Future studies should elucidate the specific roles these genes play in the wheat response to Ptr.

Heat Dissipation Trends in Semiconductors and Electronic Packaging (반도체 및 전자패키지의 방열기술 동향)

  • S.H. Moon;K.S. Choi;Y.S. Eom;H.G. Yun;J.H. Joo;G.M. Choi;J.H. Shin
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.41-51
    • /
    • 2023
  • Heat dissipation technology for semiconductors and electronic packaging has a substantial impact on performance and lifespan, but efficient heat dissipation is currently facing limited improvement. Owing to the high integration density in electronic packaging, heat dissipation components must become thinner and increase their performance. Therefore, heat dissipation materials are being devised considering conductive heat transfer, carbon-based directional thermal conductivity improvements, functional heat dissipation composite materials with added fillers, and liquid-metal thermal interface materials. Additionally, in heat dissipation structure design, 3D printing-based complex heat dissipation fins, packages that expand the heat dissipation area, chip embedded structures that minimize contact thermal resistance, differential scanning calorimetry structures, and through-silicon-via technologies and their replacement technologies are being actively developed. Regarding dry cooling using single-phase and phase-change heat transfer, technologies for improving the vapor chamber performance and structural diversification are being investigated along with the miniaturization of heat pipes and high-performance capillary wicks. Meanwhile, in wet cooling with high heat flux, technologies for designing and manufacturing miniaturized flow paths, heat dissipating materials within flow paths, increasing heat dissipation area, and reducing pressure drops are being developed. We also analyze the development of direct cooling and immersion cooling technologies, which are gradually expanding to achieve near-junction cooling.

Studies on Electrostatic Propensity of Fabrics (직물대전성에 관한 연구)

  • 최병희;배도규
    • Journal of Sericultural and Entomological Science
    • /
    • v.27 no.2
    • /
    • pp.54-63
    • /
    • 1985
  • This studies has been carried out how to effect on electrostafic propensity of synthetic fabrics by coating with 0.5% acrylic polymer solution which was previously developed by the author to improve anticrease nature of silk. The work conditions are: (A) Applied synthetic polymer was acrylic polymer 525, developed by the author. (B) Electrostatic voltage for various fabrics were carried out by Korea standard abrasion partner with Korea standard (KS K 0905) cotton, nylon, polyester and the self sample fabric. (C) Applied fabrics for the investigations were carried out by using abrasion partner with Korea standard (KS K 0905) cotton, nylon, polyester and the self sample fabric. (D) Electrostatic propensity investigations were carried out by use of sample as silk, nylon, polyester and acrylic fabrics, seperating before finish or after finish. (E) Washing after the finish or the original fabric was carried out by Korea standard method, KS K 0465. Through the investigations, he happened to find many interesting matters and the obtained results are as followings. 1. Electrostatic voltage for the finished fabrics increased more than their original silk, nylon, acrylic fabrics except polyester fabric. (See Table 5) 2. Electrostatic voltage for the finished polyester against K.S. polyester decreased remarkably than the original fabric test. 3. In spite of no problem on electrostatic propensity of silk, it showed high electrostatic voltage between the same nature fabric abrasion, because silk is very weak against abrasion and because the test method had been developed to be useful for only synthetic fabrics. 4. Electrostatic voltage increased more in case of abrasion between different nature of fabrics than the same nature of fabrics. 5. Electrostatic voltage of each fabric increased by repeat of wash. 6. Many investigation data were followed with Contact Electrification Series Principle, another word, the farther each other located fabric on the series abrasion was, the higher electrostatic voltage. (See Fig. 6) 7. Such investigation gives warning of use on the mix fiber spinning service as far as concern with electrification. 8. It may also call attention for such increase of electrification in case any finishing of silk textile.

  • PDF