• Title/Summary/Keyword: 3-D Approach

검색결과 2,459건 처리시간 0.029초

3D imaging and 3D display based on digital holography

  • Matoba, Osamu
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2009년도 창립 20주년기념 특별학술발표회
    • /
    • pp.133-134
    • /
    • 2009
  • We have presented our approach to build a 3D display system based on digital holography. For wide viewing angle, we have presented several techniques such as measurement, time-sharing display, and coherent amplification. These techniques can advance the wavefront 3D display system to next stage.

  • PDF

금속 3D 프린팅 적층 제조 공정 기반 Al-Si-Cu-Mg 합금 조합 실험 (3D-printing-based Combinatorial Experiment for Al-Si-Cu-Mg Alloys)

  • 송용욱;김정준;박수원;최현주
    • 한국분말재료학회지
    • /
    • 제29권3호
    • /
    • pp.233-239
    • /
    • 2022
  • Aluminum alloys are extensively employed in several industries, such as automobile, aerospace, and architecture, owing to their high specific strength and electrical and thermal conductivities. However, to meet the rising industrial demands, aluminum alloys must be designed with both excellent mechanical and thermal properties. Computer-aided alloy design is emerging as a technique for developing novel alloys to overcome these trade-off properties. Thus, the development of a new experimental method for designing alloys with high-throughput confirmation is gaining focus. A new approach that rapidly manufactures aluminum alloys with different compositions is required in the alloy design process. This study proposes a combined approach to rapidly investigate the relationship between the microstructure and properties of aluminum alloys using a direct energy deposition system with a dual-nozzle metal 3D printing process. Two types of aluminum alloy powders (Al-4.99Si-1.05Cu-0.47Mg and Al-7Mg) are employed for the 3D printing-based combined method. Nine types of Al-Si-Cu-Mg alloys are manufactured using the combined method, and the relationship between their microstructures and properties is examined.

Wavefront 3D Reconstruction and Measurement for Natural 3D Display System

  • Matoba, Osamu;Nitta, Kouichi;Awatsuji, Yasuhiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.935-938
    • /
    • 2008
  • Three-dimensional (3D) display systems based on wavefront reconstruction are presented. To obtain the wavefront of 3D objects, we present holographic recording using temporally or spatially phase-shifting interferometer. In the 3D display systems, phase-only reconstruction using a spatial light modulator and an approach to increase the reconstructed power are presented.

  • PDF

Transfer Learning based Parameterized 3D Mesh Deformation with 2D Stylized Cartoon Character

  • Sanghyun Byun;Bumsoo Kim;Wonseop Shin;Yonghoon Jung;Sanghyun Seo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권11호
    • /
    • pp.3121-3144
    • /
    • 2023
  • As interest in the metaverse has grown, there has been a demand for avatars that can represent individual users. Consequently, research has been conducted to reduce the time and cost required for the current 3D human modeling process. However, the recent automatic generation of 3D humans has been focused on creating avatars with a realistic human form. Furthermore, the existing methods have limitations in generating avatars with imbalanced or unrealistic body shapes, and their utilization is limited due to the absence of datasets. Therefore, this paper proposes a new framework for automatically transforming and creating stylized 3D avatars. Our research presents a definitional approach and methodology for creating non-realistic character avatars, in contrast to previous studies that focused on creating realistic humans. We define a new shape representation parameter and use a deep learning-based method to extract character body information and perform automatic template mesh transformation, thereby obtaining non-realistic or unbalanced human meshes. We present the resulting outputs visually, conducting user evaluations to demonstrate the effectiveness of our proposed method. Our approach provides an automatic mesh transformation method tailored to the growing demand for avatars of various body types and extends the existing method to the 3D cartoon stylized avatar domain.

3차원 기하 처리와 유한요소 분석을 이용한 치아 임플란트 식립 계획 수립 (Planning of Dental Implant Placement Using 3D Geometric Processing and Finite Element Analysis)

  • 박형욱;박철우;김명수;박형준
    • 한국CDE학회논문집
    • /
    • 제17권4호
    • /
    • pp.253-261
    • /
    • 2012
  • In order to make dental implant surgery successful, it is important to perform proper planning for dental implant placement. In this paper, we propose a decent approach to dental implant placement planning based on geometric processing of 3D models of jawbones, a nerve curve and neighboring teeth around a missing tooth. Basically, the minimum enclosing cylinders of the neighboring teeth around the missing tooth are properly used to determine the position and direction of the implant placement. The position is computed according to the radii of the cylinders and the center points of their top faces. The direction is computed by the weighted average of the axes of the cylinders. For a cylinder whose axis passes the position along the direction, its largest radius and longest length are estimated such that it does not interfere with the neighboring teeth and the nerve curve, and they are used to select the size and type of an implant fixture. From the geometric and spatial information of the jawbones, the teeth and the fixture, we can construct the 3D model of a surgical guide stent which is crucial to perform the drilling operation with ease and accuracy. We have shown the validity of the proposed approach by performing the finite element analysis of the influence of implant placement on bone stress distribution. Adopted in 3D simulation of dental implant placement, the approach can be used to provide dental students with good educational contents. It is also expected that, with further work, the approach can be used as a useful tool to plan for dental implant surgery.

Hydrofoil optimization of underwater glider using Free-Form Deformation and surrogate-based optimization

  • Wang, Xinjing;Song, Baowei;Wang, Peng;Sun, Chunya
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권6호
    • /
    • pp.730-740
    • /
    • 2018
  • Hydrofoil is the direct component to generate thrust for underwater glider. It is significant to improve propulsion efficiency of hydrofoil. This study optimizes the shape of a hydrofoil using Free-Form Deformation (FFD) parametric approach and Surrogate-based Optimization (SBO) algorithm. FFD approach performs a volume outside the hydrofoil and the position changes of control points in the volume parameterize hydrofoil's geometric shape. SBO with adaptive parallel sampling method is regarded as a promising approach for CFD-based optimization. Combination of existing sampling methods is being widely used recently. This paper chooses several well-known methods for combination. Investigations are implemented to figure out how many and which methods should be included and the best combination strategy is provided. As the hydrofoil can be stretched from airfoil, the optimizations are carried out on a 2D airfoil and a 3D hydrofoil, respectively. The lift-drag ratios are compared among optimized and original hydrofoils. Results show that both lift-drag-ratios of optimized hydrofoils improve more than 90%. Besides, this paper preliminarily explores the optimization of hydrofoil with root-tip-ratio. Results show that optimizing 3D hydrofoil directly achieves slightly better results than 2D airfoil.

Curvature and Histogram of oriented Gradients based 3D Face Recognition using Linear Discriminant Analysis

  • Lee, Yeunghak
    • Journal of Multimedia Information System
    • /
    • 제2권1호
    • /
    • pp.171-178
    • /
    • 2015
  • This article describes 3 dimensional (3D) face recognition system using histogram of oriented gradients (HOG) based on face curvature. The surface curvatures in the face contain the most important personal feature information. In this paper, 3D face images are recognized by the face components: cheek, eyes, mouth, and nose. For the proposed approach, the first step uses the face curvatures which present the facial features for 3D face images, after normalization using the singular value decomposition (SVD). Fisherface method is then applied to each component curvature face. The reason for adapting the Fisherface method maintains the surface attribute for the face curvature, even though it can generate reduced image dimension. And histogram of oriented gradients (HOG) descriptor is one of the state-of-art methods which have been shown to significantly outperform the existing feature set for several objects detection and recognition. In the last step, the linear discriminant analysis is explained for each component. The experimental results showed that the proposed approach leads to higher detection accuracy rate than other methods.

고품질의 3D 콘텐츠 제작을 위한 베이지안 접근방식의 사진측량기반 편위수정기법 개발 (Development of Photogrammetric Rectification Method Applying Bayesian Approach for High Quality 3D Contents Production)

  • 김재인;김태정
    • 방송공학회논문지
    • /
    • 제18권1호
    • /
    • pp.31-42
    • /
    • 2013
  • 본 논문에서는 고품질의 3D 콘텐츠 제작에 있어 입체피로를 최소화하기 위한 영상의 수직시차 교정방법으로, 베이지안 접근방식을 적용한 사진측량기반의 강인 편위수정 기법을 제안하고자 한다. 영상의 수직시차 제거 과정은 크게 기하추정 단계와 에피폴라 변환 단계로 구성된다. 본 논문에서는 기하추정을 위해 사진측량에서 널리 활용되고 있는 공면조건 기반의 상대표정 알고리즘을 적용한다. 이때 상대표정 알고리즘에는 자동 정합점 추출에 따른 오정합과 위치오차에 강인성을 확보하기 위해 제약조건을 도입한 베이지안 접근방식을 적용하고자 하며, 이를 바탕으로 수행되는 에피폴라 변환에는 영상의 왜곡과 원 영상 대비 변형을 최소화하기 위한 공선조건기반의 중심투영변환기법을 적용하고자 한다. 알고리즘의 성능검증을 위한 비교 알고리즘으로, 기하추정에는 일반적인 상대표정 알고리즘과 컴퓨터비전분야의 8점 알고리즘 및 스테레오 캘리브레이션 기법이 사용되었으며, 에피폴라 변환에는 Hartley 방법과 Bouguet 방법이 사용되었다. 실험결과는 제안 알고리즘의 높은 정확도와 여러 오차요인들에 대한 강인성, 그리고 최소화된 영상변형의 결과를 보여주었다.

A Sketch-based 3D Object Retrieval Approach for Augmented Reality Models Using Deep Learning

  • 지명근;전준철
    • 인터넷정보학회논문지
    • /
    • 제21권1호
    • /
    • pp.33-43
    • /
    • 2020
  • Retrieving a 3D model from a 3D database and augmenting the retrieved model in the Augmented Reality system simultaneously became an issue in developing the plausible AR environments in a convenient fashion. It is considered that the sketch-based 3D object retrieval is an intuitive way for searching 3D objects based on human-drawn sketches as query. In this paper, we propose a novel deep learning based approach of retrieving a sketch-based 3D object as for an Augmented Reality Model. For this work, we introduce a new method which uses Sketch CNN, Wasserstein CNN and Wasserstein center loss for retrieving a sketch-based 3D object. Especially, Wasserstein center loss is used for learning the center of each object category and reducing the Wasserstein distance between center and features of the same category. The proposed 3D object retrieval and augmentation consist of three major steps as follows. Firstly, Wasserstein CNN extracts 2D images taken from various directions of 3D object using CNN, and extracts features of 3D data by computing the Wasserstein barycenters of features of each image. Secondly, the features of the sketch are extracted using a separate Sketch CNN. Finally, we adopt sketch-based object matching method to localize the natural marker of the images to register a 3D virtual object in AR system. Using the detected marker, the retrieved 3D virtual object is augmented in AR system automatically. By the experiments, we prove that the proposed method is efficiency for retrieving and augmenting objects.