• Title/Summary/Keyword: 3-D Analysis Program

Search Result 1,487, Processing Time 0.029 seconds

Advances in Simulation of Arbitrary 3D Crack Growth using FRANC3Dv5

  • Wawrzynek, P.A.;Carter, B.J.;Hwang, Chang-Yu;Ingraffea, A.R.
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.607-613
    • /
    • 2010
  • FRANC3D is a program for simulating arbitrary three-dimensional crack growth. Recently, a completely new version of the program, FRANC3D/NG, has been created. Unlike previous versions, which relied largely on boundary element analysis, the new version of the program works with finite element analysis exclusively and is designed to work with general-purpose commercial finite element packages. This paper presents the theoretical underpinnings of the procedures to adaptively modify the geometry and mesh of a model to simulate crack growth.

3-D Groundwater Flow Analysis of Excavated Ground by Reliability Method (신뢰성기법에 의한 굴착지반에서의 3차원 지하수 흐름해석)

  • Kim, Hong-Seok;Park, Joon-Mo;Jang, Yeon-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.69-76
    • /
    • 2006
  • A reliability-groundwater flow analysis is performed and the influence of flow parameters on the probability of exceeding the threshold value is examined. For this study, the 3-D numerical groundwater flow program, DGU-FLOW, is developed by extending the 2-D flow program and is coupled to the first and second order reliability program. The 3-D flow program is verified by solving the examples of groundwater flow through the underground excavation and comparing the results from commercial MODFLOW program. Reliability routine of the program is also verified by comparing the probability of failure with that of Monte-Carlo Simulation. The reliability analysis of the groundwater flow showed that the probability of failure from the first and second order reliability method are quite close to that of Monte-Carlo Simulation. from the parametric study of hydraulic conductivity of soil layers, the increase of both mean and variance of hydraulic conductivity results in the increase of probability of exceeding the threshold flow quantity. The probability of failure was more sensitive to constant head located at the end of the flow domain than the other parameters.

Prediction of Cutting Stress by 2D and 3D-FEM Analysis and Its Accuracy (2D-3D FEM 해석에 의한 절단응력의 해석 및 정도)

  • 장경호;이상형;이진형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.95-101
    • /
    • 2001
  • Steel bridges, which have been damaged by load and corrosion, need repair or strengthening. In general, before the repair welding procedure, cutting procedure carry out. Therefore, the investigating of the behavior of stress generated by cutting is so important for safety of structure. Residual stress produced by gas cutting was analyzed using 2D and 3D thermal elasto-plastic FEM. According to the results, the magnitude of temperature was analyzed by 2D-FEM is smaller than that was analyzed using the 3D-FEM program at the start and end edge of flange. And the magnitude and distribution of residual stress of perpendicular to the cutting line was analyzed by the 2D-FEM program was similar to that was analyzed by the 3B-FEM program. Therefore, it is possible to predict of cutting stress by 2D and 3D FEM.

  • PDF

Large-scale 3D SSI Analysis using KIESSI-3D Program (KIESSI-3D 프로그램을 이용한 대형 3차원 SSI 해석)

  • Lee, Eun-Haeng;Kim, Jae-Min;Seo, Choon-Gyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.439-445
    • /
    • 2013
  • The soil-structure interaction(SSI) effect should be considered to accurately assess the seismic response of structure constructed on soft soil site other than the hard bedrock. Recently, the demand of SSI analysis has increased due to strengthening of the regulatory guidelines of nuclear power plant such as the USNRC SRP 3.7.2. In this study an accuracy and running time of the KIESSI-3D program for large-scale 3D SSI analysis were investigated. The seismic SSI analysis using the KIESSI-3D program was performed for several examples of large-scale three-dimensional soil-structure interaction system. The analysis results were compared with those of the ACS/SASSI program. Good agreements in transfer functions at selected locations showd that KIESSI-3D yields accurate solution for large-scale SSI problem. Moreover, it was found that running speed of the KIESSI-3D for large-scale 3D SSI analysis is much faster than that of the ACS/SASSI about 30~2000 times.

Reliability approach to three-dimensional groundwater flow analysis in underground excavation (지하굴착지반에서의 3차원 지하수흐름에 관한 신뢰성해석)

  • Jang, Yeon-Soo;Kim, Hong-Seok;Park, Joon-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.988-997
    • /
    • 2006
  • In this paper, a reliability-groundwater flow program is developed by coupling the 3-D finite element numerical groundwater flow program with first and second order reliability program. The numerical groundwater program developed called DGU-FLOW is verified by solving the examples of groundwater flow through the underground excavation and comparing the results with those of commercial MODFLOW 3D programs. Reliability routine of the program is also verified by comparing the probability of failure of the flow model from FORM/SORM with that of Monte-Carlo Simulation. The difference of out-flux and total head calculated near the bottom of the excavation using the deterministic 3D groundwater flow and the commercial programs was negligible. The reliability analysis of the groundwater flow showed that the probability of failure from the first and second order reliability method are quite close that of Monte-Carlo Simulation. Therefore, the developed program is considered effective for analyzing the groundwater flow with uncertainty in hydraulic conductivity of the soils.

  • PDF

Implementation of steel connection and interface using Xsteel (Xsteel을 사용한 접합부 자동화 시스템의 구현 및 인터페이스 형성)

  • 조효남;조영상;박미연;이승근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.305-312
    • /
    • 2003
  • Recently, with a progressive development of hardware of computer, the internet and network technology, the environment of construction varies rapidly due to increase the complex form in structure shape and system. With variations, the CAD system for design and products also varies from 2D system to 3D system. This study mainly deals with the methodology of automatic connection design of 3D CAD system, steel connection system (XSteel) using macro. First, using design program in the steel connection system, Xsteel, the joint connection macro will be made up and established the detail classes of design. The next, Database Program (Converter Program) related to the general structural analysis program (MIDAS) and the steel connection program (Xsteel) is constructed for data interface between two programs. From this study, if the merits of 3D CAD system and converter program are utilized well, it is expected that the time needed in modeling and the amounts due to material loses decrease gradually.

  • PDF

Prediction of Cutting Stress by 2D and 3D-FEM Analysis and Its Accuracy (2차원과 3차원 FEM 해석에 의한 절단응력의 해석 및 정도)

  • 장경호;이상형;이진형;강재훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.261-269
    • /
    • 2003
  • Steel bridges, which have been damaged by load and corrosion, need repair or strengthening. In general, before the repair welding procedure, cutting procedure carry out. Therefore, the investigating of the behavior of stress generated by cutting is so important for safety of structure. Residual stress produced by gas cutting was analyzed using 2D and 3D thermal elasto plastic FEM. According to the results, the magnitude of temperature was analyzed by 2D FEM is smaller than that was analyzed using the 3D FEM program at the start and end edge of flange. And the magnitude and distribution of residual stress of perpendicular to the cutting line was analyzed by the 2D FEM program was similar to that was analyzed by the 3D FEM program. Therefore, it is possible to predict of cutting stress by 2D and 3D FEM.

The Effect of 3D PRINTING and Physical Education Central STEAM Program on the Subject Interest and Creative Attitude of Middle School Students (3D 프린팅과 체육 중심 STEAM프로그램이 중학생의 교과흥미도 및 창의적 태도에 미치는 영향)

  • Ryu, Chung-Hyun;Cho, Gun-Sang
    • Journal of Digital Convergence
    • /
    • v.15 no.1
    • /
    • pp.547-557
    • /
    • 2017
  • The purpose of this study was to investigate the effect of 3D PRINTING and physical education central STEAM program on the subject interest and creative attitude of middle school students. In order to achieve this purpose, this research collected data from two different groups; a control group (n=98) and a comparison group (n=101) who are attending middle schools located in Gyeonggi-do. The exploratory factor analysis, reliability analysis, independent t-test and paired t-test were conducted by the IBM SPSS 20.0 program. The results are as follows; First, physical education central STEAM utilizing 3D PRINTING is efficient in the subject interest. Second, physical education central STEAM utilizing 3D PRINTING is efficient in the creative attitude.

Development of Seismic Analysis Technique for Masonry Structure (조적식 교각의 내진해석 기법 개발)

  • 정용철;배준현;이준석;강영종
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.171-176
    • /
    • 2002
  • There are many railway structures which were designed without conidering aseismic capacity. In special, masonry structures constructed long time ago should be reviewed about their resistance to earthquake. In this paper, technique to evaluate the capacity of masonry railway bridge is tried to develop by means of FEM analysis. In general FEM analysis program, 3-D solid element is used for masonry structures and response spectrum analysis procedure is tried. In addition, 3-D solid element has material properties equivalent to mortar-brick composite body. Used FEM program is ABAQUS-CAE.

  • PDF

Application of Patient-Specific 3D-Printed Orthopedic Splint for Bone Fracture in Small Breed Dogs

  • Kwangsik Jang;Eun Joo Jang;Yo Han Min;Kyung Mi Shim;Chunsik Bae;Seong Soo Kang;Se Eun Kim
    • Journal of Veterinary Clinics
    • /
    • v.40 no.4
    • /
    • pp.268-275
    • /
    • 2023
  • In this paper, we designed 3D-printed orthopedic splint models for patient-specific external coaptation on fracture healing and analyzed the stability of the models through finite element method (FEM) analysis under compressive load conditions. Polylactic acid (PLA) and acrylonitrile-butadiene-styrene (ABS) based 3D splint models of the thicknesses 1, 3, 5 and 7 mm were designed, and Peak von Mises stress (PVMS) and maximum displacement (MD) of the models were analyzed by FEM under compressive loads of 50, 100, 150, and 200 N. The FEM results indicated that PVMS and MD values, regardless of material, had a negative correlation with the thickness of the models and a positive correlation with the compressive load. There was a risk of splint deformation under conditions more extreme than 100 N with 5 mm thickness. For successful clinical application of 3D-printed orthopedic splints in veterinary medicine, it is recommended that the splint should be produced not less than 5 mm thickness. Also, it is expected to be stable when the splint is applied to situations with a compressive load of 100 N or less. There is an advantage of overcoming the limitations of the existing bandage method through 3D-printing technology as well as verifying the stability through 3D modeling before application. Such 3D printing technology will be widely used in veterinary medicine and various fields as well as orthopedics.