• Title/Summary/Keyword: 3-D ANALYSIS

Search Result 16,658, Processing Time 0.051 seconds

Performance Analysis of Linear Brake by Using Efficient 2-D Model (유효한 2차원 모델을 이용한 리니어 브레이크 성능 해석)

  • Han, Pil-Wan;Chun, Yon-Do;Lee, Ju;Lee, Kwan-Seop
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.601-607
    • /
    • 1998
  • This paper presents the efficient 2-D linear brake analysis model which can compensate the lateral leakage flux by changingng the airgap length and magneto-motive force(MMF). The linkage flux of the 2-D analysis is larger than that of 3-D analysis. This is caused by the assumption in 2-D analysis that geometric and physical values are constant along the perpendicular direction(z) to the analysis region. The equivalent MMF have been calculated from the linkage flux difference between the 2-D and 3-D analyses which are performed at zero velocity. The performances of the linear brake have been analyzed effectively by using the compensated 2-D models without using 3-D FEM.

  • PDF

Development of Sleeve Patterns of Structural Firefighting Protective Clothing using by 3D Body Shape and 3D Motion Analysis (3차원 인체형상과 3차원 동작분석에 의한 방화복 소매패턴 개발)

  • Han, Sul-Ah;Nam, Yun-Ja;Yoon, Hye-Jun;Lee, Sang-Hee;Kim, Hyun-Joo
    • Fashion & Textile Research Journal
    • /
    • v.14 no.1
    • /
    • pp.109-121
    • /
    • 2012
  • This study aims at developing ergonomics patterns for the sleeve of structural firefighting protective clothing through 3D motion analysis in order to ensure efficiency and safety of firefighters who are exposed to harmful environment at work. A new research pattern was developed by applying the total results of 3D motion analysis, changes of body surface length measurements, and 2D data on 3D body shape analysis on the size 3 patterns of the existing coat sleeve. For the sleeves, we used the body surface length of the range of shoulder's flexion and the joint angle of the range of wrist's ulnar deviation. And for the production of structural firefighting protective clothing using the research pattern, we recruited a recognized producer of structural firefighting protective clothing designated by KFI. Unlike everyday clothes, structural firefighting protective clothing should be able to fully protect the wearers from the harmful environment that threatens their lives and should not cause any restrictions on their movement. Therefore, the focus of research and development of such protective clothing should be placed on consistent development of new technologies and production methods that will provide protection and comfort for the wearer rather than production cost reduction or operational efficiency. This study is meaningful as it applied 3D motion analysis instead of the existing methods to develop the patterns. In particular, since 3D motion analysis enables the measurement of the range of motion, there should be continuous research on the development of ergonomics patterns that consider workers' range of motion.

Comparison of UNDEX Whipping Response of Hull Girder according to Modeling Methods (해석모델링 방법에 따른 선체거더의 수중폭발 휘핑응답 비교)

  • Kwon, Jeong-Il;Chung, Jung-Hoon;Lee, Sang-Gab
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.631-636
    • /
    • 2005
  • One and three dimensional whipping response analyses of a naval surface combatant subjected to an underwater explosion bubble pulse were carried out to compare the efficiency and accuracy according to the modeling methods. In 1-D analysis, program UNDEXWHIP developed by KIMM was used, which is based on the thin-walled Timoshenko's beam theory and on the modal analysis method using wetted vibratory modes of the hull girder. In 3-D analysis, three finite element models were suggested using LS-DYNA/USA code, such as 3-D beam model considering geometric shape of wetted side shell, coarse and fine 3-D F.E. models. Through the comparison of results from the 1-D and 3-D analyses, it could be confirmed that 1-D analysis result is in good agreement with 3-D analysis ones, and that fine 3-D F.E. model, shock analysis one, is also used both in the shock response and whipping response analyses for the analyst effort and time savings.

Statistical analysis for RMSE of 3D space calibration using the DLT (DLT를 이용한 3차원 공간검증시 RMSE에 대한 통계학적 분석)

  • Lee, Hyun-Seob;Kim, Ky-Hyeung
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • The purpose of this study was to design the method of 3D space calibration to reduce RMSE by statistical analysis when using the DLT algorithm and control frame. Control frame for 3D space calibration was consist of $1{\times}3{\times}2m$ and 162 contort points adhere to it. For calculate of 3D coordination used two methods about 2D coordination on image frame, 2D coordinate on each image frame and mean coordination. The methods of statistical analysis used one-way ANOVA and T-test. Significant level was ${\alpha}=.05$. The compose of methods for reduce RMSE were as follow. 1. Use the control frame composed of 24-44 control points arranged equally. 2. When photographing, locate control frame to center of image plane(image frame) o. use the lens of a few distortion. 3. When calculate of 3D coordination, use mean of 2D coordinate obtainable from all image frames.

3D Visualization and Analysis of Geotechnical Information (지반정보 3차원 영상화 및 해석기술 개발)

  • 김광은;송원경;신희순
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.371-378
    • /
    • 1999
  • A prototype computer program was developed which visualizes various kinds of geotechnical information using 3D object graphics techniques. The program integrates various kinds of geotechnical data such as surface geology map, boreholes data, geophysical data as well as man made subsurface structures. It also reads NGIS DXF map and generates digital elevation model from iso-elevation line layer of the DXF map. All the data are put into a 3D model as 3D objects. The created 3D model can be viewed and analysed in a interactive 3D way.

  • PDF

Sucess Factor of 3D Movie "Avatar" and the Possibility Analysis of the Korean 3D Contents (아바타 3D영화의 성공요인과 한국형 3D 콘텐츠의 가능성 분석)

  • Cho, Byung-Chul
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.9
    • /
    • pp.137-145
    • /
    • 2010
  • Many research works are actively being done due to the 3D contents production technology for global competition through the world. In korea, many experts have taken notice of high quality 3D movies produced by Hollywood. Recently, 3D movie "Avatar" advanced 3D computer graphics based digital production technology is heavily influencing the contents industry in global market. Therefore, In this paper, the success factor of "Avatar"has to be analyzed. Also, the analysis of 3D contents production environment of the domestic and Hollywood is performed. Based on that, we analyzed the factors of threat and opportunity of the Korean 3D contents. Also, Based on the statistical data analysis of the korean film commission, favorable reactions of the korean movie and the government's powerful policy direction, we proposed the successful possibility of the korean 3D contents.

A Study on the Rational Application of 3D Numerical Analysis for Anchored Earth Retaining Wall (앵커지지 흙막이 벽체의 합리적인 3차원 수치해석기법 적용에 관한 연구)

  • Jeong, Sang-Seom;Sim, Jae-Uk;Lee, Sung-June
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.4
    • /
    • pp.29-39
    • /
    • 2016
  • This paper presents the results of 2D and 3D finite element simulations conducted to analyze the effects of excavation depth (H), excavation width (L), and ground condition on the behavior of anchored earth retaining wall in inclined ground layers. The results of numerical analyses are compared with those of the site instrumentation analyses. Based on the results obtained, it appeared that 2D numerical analysis tends to overestimate the horizontal displacement of retaining wall compared to the 3D numerical analysis. When the excavation depth is deeper than 20m, it is found that 2D and 3D numerical analysis results of excavation work in soil ground condition are more different from the results in rock ground condition. For an accurate 3D numerical analysis, applying 3D mesh which has an excavation width twice longer than excavation depth is recommended. Consequently, 3D numerical analysis may be able to offer significantly better predictions of movement than 2D analysis.

Design of Interface between 3D Object Model and Structure Analysis Program (3D 객체 모델과 구조해석 프로그램의 인터페이스 설계)

  • Park, Jae-Geun;Kim, Min-Hee;Lee, Kwang-Myong;Choi, Jung-Ho;Shin, Hyun-Mock
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.247-252
    • /
    • 2008
  • Recently, the virtual construction system in which project participants efficiently share and control the information throughout the life-cycle of construction project using 3D object models is being developed all over the world. In this paper, a design of interface between 3D object model of structures and structural analysis system that is essential for the analysis and design of civil structures in the virtual space is treated. The relation parametric modeling technique that is needed to make the 3D object models and the construction method of product breakdown structure(PBS) that considers the several parameters for the structural analysis are presented. PBS is built so that it is possible to extract needed attribute information from 3D object model and to apply it to the structural analysis. Design methodology for interface program is proposed that several numerical values determined by the cooperative work same as structural analysis are delivered to 3D object models without additional work. An interface program between 3D object models and structural analysis system developed based on the proposed method would be effectively used to develop virtual construction system.

Performance Analysis of Simultaneous Liftable 3D Concrete Printing Based on Statistical Analysis Algorithm (통계분석 알고리즘 프로그램을 활용한 동시 인상 3D 콘크리트 프린팅의 성능 분석)

  • Yoon-Chul Kim;Sung-Jo Kim;Bongsik Kim;Yongsoo Ji;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.407-414
    • /
    • 2023
  • In this study, an automated jack-up system, applicable to various fields, was employed for 3D concrete printing and developed as a simultaneous liftable 3D concrete printing system. This developed printing system enables safe and precise jack-up by monitoring the measured jack-up distance using Pearson correlation coefficient analysis and a hydraulic system with interquartile range analysis in real-time during 3D concrete printing operations. It is possible to secure the quality of 3D concrete printing structures, which is essential for expanding the application of 3D concrete printing to construct larger structures. Specimens were printed using both conventional 3D concrete printing and simultaneous liftable 3D concrete printing to evaluate the system performance. The printed specimens were investigated using a 3D scanner. The layer-wise diameter and angle of intersection of the scanned specimens were measured, and an analysis was performed to verify the advantages of the simultaneous liftable 3D concrete printing.

Prediction of Insulation Capability for Ground Fault to Consider Asymmetry in SF6 Circuit Breaker

  • Oh, Yeon-Ho;Song, Ki-Dong;Kim, Hong-Kyu;Lee, Hae June;Hahn, Sung-Chin
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2046-2051
    • /
    • 2015
  • Currently, most high-voltage gas circuit breakers (CBs) include asymmetrical geometries in the shield, the tank, the hot-gas exhaust, and the connection parts for bushings. For this reason, a 3-dimensional (3-D) analysis of the insulation capability is necessary, rather than a 2-D analysis. However, a 3-D analysis has difficulties due to the computational time and complex modeling. This paper presents a 3-D analysis considering the asymmetry in high-voltage gas CBs and a technique to reduce the calculation time. In the proposed technique, the arc plasma requiring the most computational time is first calculated by a 2-D analysis. Then, the results such as pressure, temperature, and velocity are input as a source for the 3-D analysis. This technique is applied to a 145kV self-blast-type CB and the analysis result exhibits good agreement with the experimental result.