• 제목/요약/키워드: 3-D 10-node equivalent element

검색결과 4건 처리시간 0.017초

3차원 10절점-상당요소에 의한 굽힘문제의 정적.동적해석 (Static and Dynamic Analyses of Bending Problems Using 3-Dimensional 10-Node Equivalent Element)

  • 권영두;윤태혁
    • 전산구조공학
    • /
    • 제10권4호
    • /
    • pp.117-130
    • /
    • 1997
  • 본 논문에서는 등방성판의 인장이나 전단변형은 물론 굽힘문제에도 적용할 수 있는 3차원 고체요소들 중에서 최소의 자유도를 갖는 수정 10절점 상당요소를 제안하였다. 제안된 수정 10절점 상당요소는 Q11요소나 20절점요소로부터 자유도가 줄어듬에 기인한 과대한 굽힘강성을 나타낸다. 이러한 상대적 강성과잉 현상을 수정하기 위한 효과적인 방법으로 가우스 적분점 수정 방법을 제안하였다. 수정량은 포아송 비의 함수이다. 수정 10절점 상당요소의 효과를 여러 가지 예에 적용하여 검증하였다. 제안된 수정 10절점 상당요소에 의한 등방성판의 정적해석과 자유진동 해석의 결과들은 20절점요소를 사용한 결과들과 잘 일치하였다.

  • PDF

3차원 셸 요소를 이용한 섬유보강 고무모재 공기 스프링의 유한요소해석 (Finite Element Analysis of Air Springs with Fiber-Reinforced Rubber Composites Using 3-D Shell Elements)

  • 이형욱;허훈
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.602-609
    • /
    • 2001
  • This paper is concerned with the orthotropic problem of diaphragm-type air springs which consist of rubber linings, nylon reinforced rubber composite and bead ring. The analysis is carried out with a finite element method developed to consider the orthotropic properties, geometric nonlinearity using four-node degenerated shell element with reduced integration. Physical stabilization scheme is used to control the zeroenergy mode of the element. The analysis includes an inflation analysis and a lateral analysis of an air spring for the deformed shape and the spring load with respect to the vertical and l ateral deflection. Numerical results demonstrate the variation of the outer diameter, the fold height, the vertical force and the lateral force with respect to the inflation pressure and the lateral deflection.

Thermoelastic deformation behavior of functionally graded cylindrical panels with multiple perforations

  • Shyam K. Chaudhary;Vishesh R. Kar;Karunesh K. Shukla
    • Advances in aircraft and spacecraft science
    • /
    • 제10권2호
    • /
    • pp.127-140
    • /
    • 2023
  • The present article focuses on the thermoelastic deformation behavior of inhomogeneous functionally graded metal/ceramic cylindrical shell structure with multiple perforations using 2D finite element approximation. Here, cylindrical shell structure is considered with single (1×1) and multiple (2×2, 3×3 and 4×4) perforations. The temperature-dependent elastic and thermal properties of functionally graded material are evaluated using Voigt's micromechanical material scheme via power-law function. The kinematics of the proposed model is based on the equivalent single-layer first-order shear deformation mid-plane theory with five degrees-of-freedom. Here, 2D isoparametric finite element solutions are obtained using eight-node quadrilateral elements. The mesh refinement of present finite element model is performed to confirm the appropriate number of elements and nodes for the analysis purpose. Subsequently, a comparison test is conducted to demonstrate the accuracy of present results. In later section, numerous numerical illustrations are demonstrated at different set of conditions by varying structural, material and loading parameters and that confirms the significance of various parameters such as power-law index, aspect ratio, thickness ratio, curvature ratio, number of perforations and temperature on the deformation characteristics of functionally graded cylindrical shell structure.

연강 판재에 대한 연강 구의 고속경사충돌 수치해석 (Numerical Simulation of High-Velocity Oblique Impact of Mild Steel Spheres Against Mild Steel Plates)

  • 유요한;장순남;정동택
    • 대한기계학회논문집A
    • /
    • 제26권3호
    • /
    • pp.576-585
    • /
    • 2002
  • A three-dimensional Lagrangian explicit time-integration finite element code for analyzing the dynamic impact phenomena was developed. It uses four node tetrahedral elements. In order to consider the effects of strain rate hardening, strain hardening and thermal softening, which are frequently observed in high-velocity deformation phenomena, Johnson-Cook model is used as constitutive model. For more accurate and robust contact force computation, the defense node contact algorithm was adopted and implemented. In order to evaluate the performance of the newly developed three-dimensional hydrocode NET3D, numerical simulations of the oblique impact of mild steel plate by mild steel sphere were carried out. Ballistic limit about various oblique angle between 0 degree and 80 degree was estimated through a series of simulations with different initial velocities of sphere. Element eroding by equivalent plastic strain was applied to mild steel spheres and targets. Ballistic limits and fracture characteristics obtained from simulation were compared with experimental results conducted by Finnegan et al. From numerical studies, the following conclusions were reached. (1) Simulations could successfully reproduce the key features observed in experiment such as tensile failure termed "disking"at normal impacts and outwards bending of partially formed plus segments termed "hinge-mode"at oblique impacts. (2) Simulation results fur 60 degrees oblique impact at 0.70 km/s and 0.91 km/s were compared with experimental results and Eulerian hydrocode CTH simulation results. The Lagrangian code NET3D is superior to Eulerian code CTH in the computational accuracy. Agreement with the experimentally obtained final deformed cross-sections of the projectile is excellent. (3) Agreement with the experimental ballistic limit data, particularly at the high-obliquity impacts, is reasonably good. (4) The simulation result is not very sensitive to eroding condition but slightly influenced by friction coefficient.