• 제목/요약/키워드: 3-D 신경망

검색결과 220건 처리시간 0.029초

RGB-D 정보를 이용한 2차원 키포인트 탐지 기반 3차원 인간 자세 추정 방법 (A Method for 3D Human Pose Estimation based on 2D Keypoint Detection using RGB-D information)

  • 박서희;지명근;전준철
    • 인터넷정보학회논문지
    • /
    • 제19권6호
    • /
    • pp.41-51
    • /
    • 2018
  • 최근 영상 감시 분야에서는 지능형 영상 감시 시스템에 딥 러닝 기반 학습 방법이 적용되어 범죄, 화재, 이상 현상과 같은 다양한 이벤트들을 강건하게 탐지 할 수 있게 되었다. 그러나 3차원 실세계를 2차원 영상으로 투영시키면서 발생하는 3차원 정보의 손실로 인하여 폐색 문제가 발생하기 때문에 올바르게 객체를 탐지하고, 자세를 추정하기 위해서는 폐색 문제를 고려하는 것이 필요하다. 따라서 본 연구에서는 기존 RGB 정보에 깊이 정보를 추가하여 객체 탐지 과정에서 나타나는 폐색 문제를 해결하여 움직이는 객체를 탐지하고, 탐지된 영역에서 컨볼루션 신경망을 이용하여 인간의 관절 부위인 14개의 키포인트의 위치를 예측한다. 그 다음 자세 추정 과정에서 발생하는 자가 폐색 문제를 해결하기 위하여 2차원 키포인트 예측 결과와 심층 신경망을 이용하여 자세 추정의 범위를 3차원 공간상으로 확장함으로써 3차원 인간 자세 추정 방법을 설명한다. 향후, 본 연구의 2차원 및 3차원 자세 추정 결과는 인간 행위 인식을 위한 용이한 데이터로 사용되어 산업 기술 발달에 기여 할 수 있다.

3차원 쉐어렛 변환과 심층 잔류 신경망을 이용한 무참조 스포츠 비디오 화질 평가 (No-Reference Sports Video-Quality Assessment Using 3D Shearlet Transform and Deep Residual Neural Network)

  • 이기용;신승수;김형국
    • 한국멀티미디어학회논문지
    • /
    • 제23권12호
    • /
    • pp.1447-1453
    • /
    • 2020
  • In this paper, we propose a method for no-reference quality assessment of sports videos using 3D shearlet transform and deep residual neural networks. In the proposed method, 3D shearlet transform-based spatiotemporal features are extracted from the overlapped video blocks and applied to logistic regression concatenated with a deep residual neural network based on a conditional video block-wise constraint to learn the spatiotemporal correlation and predict the quality score. Our evaluation reveals that the proposed method predicts the video quality with higher accuracy than the conventional no-reference video quality assessment methods.

ICP 정합과 신경망을 이용한 해마의 3차원 형상 분석 (3D Shape Analysis for the Hippocampus Using ICP Registration and Neural Networks)

  • 김정식;최수미;김용국;김명희
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제10권4호
    • /
    • pp.27-36
    • /
    • 2004
  • 본 논문에서는 뇌의 하부구조인 해마를 정확하게 분석하기 위한 형상 정규화 방법과 정상인과 간질 환자의 해마를 분류하기 위한 방법을 제시한다. 해마에 대한 형상 분석 과정은 크게 형상 표현을 구축하는 과정, 형상의 유사도를 측정하는 과정, 정상인 집단과 환자 집단을 분류하는 과정으로 이루어진다. 본 연구에서는 해마의 형상 표현으로 메쉬, 골격, 복셀로 이루어진 하이브리드 옥트리 자료구조를 구축하였다. 또한 Iterative Closest Point (ICP) 알고리즘을 사용하여 해마 골격을 기반으로 한 정규화를 수행하였다. 그리고 정규화된 해마 형상을 전역적, 국부적으로 분석하여 최종적으로 입력된 해마가 정상인 또는 간질 환자에 속하는지를 학습된 데이터를 이용하여 분류하였다. 본 논문에서 제시한 ICP 기반의 정규화 방법은 3차원 해마 형상을 정확하게 분석하게 해주고, 골격의 정점 수를 조절함으로써 정규화 시간을 감소시킬 수 있다. 뿐만 아니라 3차원 해마 모델의 형상을 신경망을 통하여 학습시킴으로써 해마의 형상이 변형된 환자 집단과 정상인 집단을 분류하는데 이용할 수 있다.

  • PDF

사용자 이동 패턴 정보를 이용한 인공신경망 기반 실내 위치 추정 방법 (ANN based Indoor Localization Method using the Movement Pattern of Indoor User)

  • 서재희;천세범;허문범
    • 한국항행학회논문지
    • /
    • 제23권6호
    • /
    • pp.526-534
    • /
    • 2019
  • 전파 신호를 이용한 위치 추정 방법은 3개 이상의 앵커로부터 거리 측정치를 획득하여야 한다. 하지만 일반적인 건물은 좁고 기다란 복도와 모퉁이로 구성되어 있어 3개 이상의 가시 앵커를 확보하기 쉽지 않으며, 이로 인해 멀티 모달 솔루션이 발생하여 사용자의 위치를 추정하기가 어렵다. 이러한 문제를 극복하기 위해 본 논문에서는 인공신경망을 이용하여 위치를 추정하는 방법을 제안한다. 인공신경망을 이용하면 멀티 모달 솔루션이 발생하더라도 축적된 거리 측정치를 기반으로 사용자 이동 패턴 정보를 획득하여 위치를 추정할 수 있다. 해당 방법은 추가적인 장비나 센서가 필요치 않으며 오직 앵커 기반의 거리 측정치만으로 위치를 추정할 수 있다. 제안된 방법을 검증하기 위해 건물 내에 충분하지 않은 수의 앵커를 설치하여 멀티 모달 솔루션을 발생시킨 상황에서 위치 추정 테스트를 수행하였다. 그 결과 앵커의 수가 충분치 않은 상황에서도 위치를 추정할 수 있음을 확인하였다.

활성자극 파라다임 fMRI에서 저주파요동 성분분석 (Low Frequency Fluctuation Component Analysis in Active Stimulation fMRI Paradigm)

  • 나성민;박현정;장용민
    • Investigative Magnetic Resonance Imaging
    • /
    • 제14권2호
    • /
    • pp.115-120
    • /
    • 2010
  • 목적 : 활성자극 파라다임을 사용한 기능적 자기공명영상 데이터에서 자발적 요동에 해당하는 저주파 BOLD 신호의 존재여부를 규명해 보고자 하였다. 대상 및 방법 : 20명의 여자 양궁선수들과 양궁 경험이 없는 23명의 여자들을 대상으로 finger-tapping 파라다임은 30초간의 운동기와 휴지기를 3회 반복하였다. 혈액산소수준의존(BOLD) fMRI 영상은 3.0 T MR 기기에서 경사자장 반향 EPI 영상을 해부학적 영상은 3차원 T1 강조영상을 사용하였다. 뇌활성화 차이는 SPM-5를 사용하여 분석하였고 저주파 요동성분을 찾기 위해 GIFT 프로그램을 사용하였다. 결과 : 두군 모두에서 finger-tapping에 따라 대뇌좌측의 주운동영역과 보조운동영역 그리고 우측 소뇌에서의 활성화가 관찰되었다. GIFT를 사용한 ICA 분석에서 피검자들의 반측 감각운동망, 동측 감각운동망 그리고 인지기능과 연관된 신경망에 해당하는 독립적인 성분들이 구별되었다. 결론 : Finger-tapping fMRI 데이터에서 BOLD 신호의 자발적 요동에 해당하는 저주파 신호 성분들을 ICA 기법을 사용하여 분리해 낼수 있었고 이러한 독립성분들이 일차운동감각 신경망 그리고 운동 인지기능을 담당하는 신경망의 휴지기 신경활동을 나타낸다는 사실을 규명할 수 있었다.

3차원 합성곱 신경망 기반 향상된 스테레오 매칭 알고리즘 (Enhanced Stereo Matching Algorithm based on 3-Dimensional Convolutional Neural Network)

  • 왕지엔;노재규
    • 대한임베디드공학회논문지
    • /
    • 제16권5호
    • /
    • pp.179-186
    • /
    • 2021
  • For stereo matching based on deep learning, the design of network structure is crucial to the calculation of matching cost, and the time-consuming problem of convolutional neural network in image processing also needs to be solved urgently. In this paper, a method of stereo matching using sparse loss volume in parallax dimension is proposed. A sparse 3D loss volume is constructed by using a wide step length translation of the right view feature map, which reduces the video memory and computing resources required by the 3D convolution module by several times. In order to improve the accuracy of the algorithm, the nonlinear up-sampling of the matching loss in the parallax dimension is carried out by using the method of multi-category output, and the training model is combined with two kinds of loss functions. Compared with the benchmark algorithm, the proposed algorithm not only improves the accuracy but also shortens the running time by about 30%.

YOLOv3 객체 검출을 이용한 AR 관광 서비스 프레임워크 (AR Tourism Service Framework Using YOLOv3 Object Detection)

  • 김인선;정치서;정계동
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권1호
    • /
    • pp.195-200
    • /
    • 2021
  • 교통 수단과 모바일의 발전으로 관광 여행 수요가 증가하고 관련 산업 또한 크게 발전하고 있다. 디지털 미디어 기술 중 한 분야인 증강현실과 관광 콘텐츠의 접목 또한 활발하게 연구 중이며 인공지능은 이미 관광 산업과 다양한 방향으로 접목되어 관광객의 여행 경험을 풍부하게 만들어준다. 본 논문에서는 관광지역을 축소해 제작한 미니어처 모형을 스캔하면, 사전에 딥러닝을 이용해 학습된 모델을 기반으로 해당 관광지를 찾은 뒤 관련 정보와 3D 모델을 AR 서비스로 제공하는 시스템을 제안한다. 다양한 딥러닝 신경망 중 하나인 YOLOv3 신경망을 사용해 모델 학습과 객체 검출을 진행하므로, 빠른 속도로 물체 검출이 이루어져 실시간으로 서비스를 제공할 수 있다.

Generative Adversarial Networks를 이용한 Face Morphing 기법 연구 (Face Morphing Using Generative Adversarial Networks)

  • 한윤;김형중
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권3호
    • /
    • pp.435-443
    • /
    • 2018
  • 최근 컴퓨팅 파워의 폭발적인 발전으로 컴퓨팅의 한계 라는 장벽이 사라지면서 딥러닝 이라는 이름 하에 순환 신경망(RNN), 합성곱 신경망(CNN) 등 다양한 모델들이 제안되어 컴퓨터 비젼(Computer Vision)의 수많은 난제들을 풀어나가고 있다. 2014년 발표된 대립쌍 모델(Generative Adversarial Network)은 비지도 학습에서도 컴퓨터 비젼의 문제들을 충분히 풀어나갈 수 있음을 보였고, 학습된 생성기를 활용하여 생성의 영역까지도 연구가 가능하게 하였다. GAN은 여러 가지 모델들과 결합하여 다양한 형태로 발전되고 있다. 기계학습에는 데이터 수집의 어려움이 있다. 너무 방대하면 노이즈를 제거를 통한 효과적인 데이터셋의 정제가 어렵고, 너무 작으면 작은 차이도 큰 노이즈가 되어 학습이 쉽지 않다. 본 논문에서는 GAN 모델에 영상 프레임 내의 얼굴 영역 추출을 위한 deep CNN 모델을 전처리 필터로 적용하여 두 사람의 제한된 수집데이터로 안정적으로 학습하여 다양한 표정의 합성 이미지를 만들어 낼 수 있는 방법을 제시하였다.

생성적 적대 신경망을 이용한 항공기 날개 플렉셔 데이터 생성 방안에 관한 연구 (A study on the Generation Method of Aircraft Wing Flexure Data Using Generative Adversarial Networks)

  • 류경돈
    • 한국항행학회논문지
    • /
    • 제26권3호
    • /
    • pp.179-184
    • /
    • 2022
  • 전투기 또는 무장헬기 날개에 장착된 무기체계의 전달정렬 성능 향상을 위해서는 정확한 플렉셔 모델이 필요하다. 플렉셔를 역학적, 확률적으로 모델링하는 방법들이 연구되고 있지만, 여전히 무기체계에 적용하기엔 모델링의 정확도가 낮다. 최근 연구되고 있는 딥러닝 기법들은 이러한 플렉셔의 비선형 특성을 모델링하기 적합하지만, 그에 앞서 딥러닝 모델링을 위해 다량의 플렉셔 데이터를 확보하는 과정에서 전투기를 운용하여 필요한 데이터를 얻는 것은 현실적으로 한계가 있다. 본 논문에서는 데이터 생성을 위해 활발히 연구 중인 생성적 적대 신경망 알고리즘을 활용하여 이미 획득한 플렉셔 데이터를 다량으로 늘리는 알고리즘을 연구하고, 생성적 적대 신경망의 대표적인 정량적 평가기법을 활용하여 실제 원본 데이터와의 유사도를 평가하였다.

열화상 카메라를 이용한 3D 컨볼루션 신경망 기반 낙상 인식 (3D Convolutional Neural Networks based Fall Detection with Thermal Camera)

  • 김대언;전봉규;권동수
    • 로봇학회논문지
    • /
    • 제13권1호
    • /
    • pp.45-54
    • /
    • 2018
  • This paper presents a vision-based fall detection system to automatically monitor and detect people's fall accidents, particularly those of elderly people or patients. For video analysis, the system should be able to extract both spatial and temporal features so that the model captures appearance and motion information simultaneously. Our approach is based on 3-dimensional convolutional neural networks, which can learn spatiotemporal features. In addition, we adopts a thermal camera in order to handle several issues regarding usability, day and night surveillance and privacy concerns. We design a pan-tilt camera with two actuators to extend the range of view. Performance is evaluated on our thermal dataset: TCL Fall Detection Dataset. The proposed model achieves 90.2% average clip accuracy which is better than other approaches.