• Title/Summary/Keyword: 3-D 신경망

Search Result 220, Processing Time 0.021 seconds

A Study on Unsupervised Learning Method of RAM-based Neural Net (RAM 기반 신경망의 비지도 학습에 관한 연구)

  • Park, Sang-Moo;Kim, Seong-Jin;Lee, Dong-Hyung;Lee, Soo-Dong;Ock, Cheol-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.1
    • /
    • pp.31-38
    • /
    • 2011
  • A RAM-based Neural Net is a weightless neural network based on binary neural network. 3-D neural network using this paper is binary neural network with multiful information bits and store counts of training. Recognition method by MRD technique is based on the supervised learning. Therefore neural network by itself can not distinguish between the categories and well-separated categories of training data can achieve only through the performance. In this paper, unsupervised learning algorithm is proposed which is trained existing 3-D neural network without distinction of data, to distinguish between categories depending on the only input training patterns. The training data for proposed unsupervised learning provided by the NIST handwritten digits of MNIST which is consist of 0 to 9 multi-pattern, a randomly materials are used as training patterns. Through experiments, neural network is to determine the number of discriminator which each have an idea of the handwritten digits that can be interpreted.

UV Mapping Based Pose Estimation of Furniture Parts in Assembly Manuals (UV-map 기반의 신경망 학습을 이용한 조립 설명서에서의 부품의 자세 추정)

  • Kang, Isaac;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.667-670
    • /
    • 2020
  • 최근에는 증강현실, 로봇공학 등의 분야에서 객체의 위치 검출 이외에도, 객체의 자세에 대한 추정이 요구되고 있다. 객체의 자세 정보가 포함된 데이터셋은 위치 정보만 포함된 데이터셋에 비하여 상대적으로 매우 적기 때문에 인공 신경망 구조를 활용하기 어려운 측면이 있으나, 최근에 들어서는 기계학습 기반의 자세 추정 알고리즘들이 여럿 등장하고 있다. 본 논문에서는 이 가운데 Dense 6d Pose Object detector (DPOD) [11]의 구조를 기반으로 하여 가구의 조립 설명서에 그려진 가구 부품들의 자세를 추정하고자 한다. DPOD [11]는 입력으로 RGB 영상을 받으며, 해당 영상에서 자세를 추정하고자 하는 객체의 영역에 해당하는 픽셀들을 추정하고, 객체의 영역에 해당되는 각 픽셀에서 해당 객체의 3D 모델의 UV map 값을 추정한다. 이렇게 픽셀 개수만큼의 2D - 3D 대응이 생성된 이후에는, RANSAC과 PnP 알고리즘을 통해 RGB 영상에서의 객체와 객체의 3D 모델 간의 변환 관계 행렬이 구해지게 된다. 본 논문에서는 사전에 정해진 24개의 자세 후보들을 기반으로 가구 부품의 3D 모델을 2D에 투영한 RGB 영상들로 인공 신경망을 학습하였으며, 평가 시에는 실제 조립 설명서에서의 가구 부품의 자세를 추정하였다. 실험 결과 IKEA의 Stefan 의자 조립 설명서에 대하여 100%의 ADD score를 얻었으며, 추정 자세가 자세 후보군 중 정답 자세에 가장 근접한 경우를 정답으로 평가했을 때 100%의 정답률을 얻었다. 제안하는 신경망을 사용하였을 때, 가구 조립 설명서에서 가구 부품의 위치를 찾는 객체 검출기(object detection network)와, 각 개체의 종류를 구분하는 객체 리트리벌 네트워크(retrieval network)를 함께 사용하여 최종적으로 가구 부품의 자세를 추정할 수 있다.

  • PDF

Detection of Premature Ventricular Contraction Using Discrete Wavelet Transform and Fuzzy Neural Network (이산 웨이블릿 변환과 퍼지 신경망을 이용한 조기심실수축 추출)

  • Jang, Hyoung-Jong;Lim, Joon-Shik
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.3
    • /
    • pp.451-459
    • /
    • 2009
  • This paper presents an approach to detect premature ventricular contraction(PVC) using discrete wavelet transform and fuzzy neural network. As the input of the algorithm, we use 14 coefficients of d3, d4, and d5, which are transformed by a discrete wavelet transform(DWT). This paper uses a neural network with weighted fuzzy membership functions(NEWFM) to diagnose PVC. The NEWFM discussed in this paper classifies a normal beat and a PVC beat. The size of the window of DWT is $-31/360{\sim}+32/360$ second(64 samples) whose center is the R wave. Using the seven records of the MIT-BIH arrhythmia database used in Shyu's paper, the classification performance of the proposed algorithm is 99.91%, which outperforms the 97.04% of Shyu's analysis. Using the forty records of the M1T-BIH arrhythmia database used in Inan's paper, the classification performance of the proposed algorithm is 98.01%, which outperforms 96.85% of Inan's one. The SE and SP of the proposed algorithm are 84.67% and 99.39%, which outperforms the 82.57% and 98.33%, respectively, of Inan's study.

  • PDF

Trends of Full 3D Human Reconstruction Technology Based on Image (이미지 기반 완전 3D 인간 복원 기술 동향)

  • Song, Dae-Young;Lee, HeeKyung;Seo, Jeongil;Cho, Donghyeon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.106-108
    • /
    • 2022
  • 이미지 기반 3D 형상 복원에 있어서, 이미지에 보이지 않는 폐색(Occlusion) 영역 부분에 대한 정보가 손실되므로 완전한 복원에 어려움이 있으며, 세밀한 텍스쳐(Texture) 표현이 이루어지지 않고 심한 평활화(Smoothing)나 고립된 노이즈 메쉬(Isolated Noise Mesh) 등 구조적 훼손이 발생한다. 주로 깊은 신경망을 이용하여, 음함수(Implicit Function) 기반 방법은 사전훈련이 완료된 보조 신경망들을 전면부에 배치하거나, Hourglass 등 임베딩(Embedding) 아키텍처를 추가하거나, 또는 표면 법선(Surface Normal)과 같은 환시(Hallucination)를 생성하여 신경망에 입력하기도 한다. 이 논문에서는, 인물의 이미지를 입력받아 색상, 머리카락 및 의상을 포함하는 완전 3D 인간 복원 기술들을 조망해본다.

  • PDF

Performance Comparisons of GAN-Based Generative Models for New Product Development (신제품 개발을 위한 GAN 기반 생성모델 성능 비교)

  • Lee, Dong-Hun;Lee, Se-Hun;Kang, Jae-Mo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.867-871
    • /
    • 2022
  • Amid the recent rapid trend change, the change in design has a great impact on the sales of fashion companies, so it is inevitable to be careful in choosing new designs. With the recent development of the artificial intelligence field, various machine learning is being used a lot in the fashion market to increase consumers' preferences. To contribute to increasing reliability in the development of new products by quantifying abstract concepts such as preferences, we generate new images that do not exist through three adversarial generative neural networks (GANs) and numerically compare abstract concepts of preferences using pre-trained convolution neural networks (CNNs). Deep convolutional generative adversarial networks (DCGAN), Progressive growing adversarial networks (PGGAN), and Dual Discriminator generative adversarial networks (DANs), which were trained to produce comparative, high-level, and high-level images. The degree of similarity measured was considered as a preference, and the experimental results showed that D2GAN showed a relatively high similarity compared to DCGAN and PGGAN.

Customized AI Exercise Recommendation Service for the Balanced Physical Activity (균형적인 신체활동을 위한 맞춤형 AI 운동 추천 서비스)

  • Chang-Min Kim;Woo-Beom Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.4
    • /
    • pp.234-240
    • /
    • 2022
  • This paper proposes a customized AI exercise recommendation service for balancing the relative amount of exercise according to the working environment by each occupation. WISDM database is collected by using acceleration and gyro sensors, and is a dataset that classifies physical activities into 18 categories. Our system recommends a adaptive exercise using the analyzed activity type after classifying 18 physical activities into 3 physical activities types such as whole body, upper body and lower body. 1 Dimensional convolutional neural network is used for classifying a physical activity in this paper. Proposed model is composed of a convolution blocks in which 1D convolution layers with a various sized kernel are connected in parallel. Convolution blocks can extract a detailed local features of input pattern effectively that can be extracted from deep neural network models, as applying multi 1D convolution layers to input pattern. To evaluate performance of the proposed neural network model, as a result of comparing the previous recurrent neural network, our method showed a remarkable 98.4% accuracy.

A study on real-time implementation of speech recognition and speech control system using dSPACE board (dSPACE 보드를 이용한 음성인식 명령처리시스템 실시간 구현에 관한 연구)

  • 김재웅;정원용
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.173-176
    • /
    • 2000
  • 음성은 인간이 가진 가장 편리한 제어전송수단으로 이를 통한 제어는 인간에게 많은 편리함을 제공할 것이다. 본 논문에서는 다층구조 신경망(Multi-Layer Perceptron)을 이용하여 간단한 음성인식 명령처리시스템을 Matlab 상에서 구성해 보았다. 음성인식을 통한 제어의 목적을 위해 화자종속, 고립단어인식기를 목표로 설정하여 연구를 수행하였다. 음성의 시작점과 끝점을 검출하기 위해 단구간 에너지와 영교차율(ZCR)을 이용하였고 인식기의 특징파라미터로는 12차 LPC켑스트럼 계수를 사용하였다. 그리고 신경망의 출력값을 기동, 정지시에 활성화되도록 3개의 계층으로 하였고, 신경망의 뉴런의 개수를 각각 12, 12, 2으로 설정하였다. 먼저 기준음성패턴으로 학습시킨 후에 Matlab 환경하에 동작하는 dSPACE 실시간처리보드에 변환된 C프로그램을 다운로드하고, 음성을 입력하여 인식 후 dSPACE보드의 D/A컨버터의 출력단에 연결된 DC모터를 기동, 정지제어를 수행하였다. 실시간 음성인식 명령처리 시스템 구현을 통하여 원격제어와 같은 음성명령을 통한 제어가 가능함을 확인할 수 있었다.

  • PDF

Multi-channel EEG classification method according to music tempo stimuli using 3D convolutional bidirectional gated recurrent neural network (3차원 합성곱 양방향 게이트 순환 신경망을 이용한 음악 템포 자극에 따른 다채널 뇌파 분류 방식)

  • Kim, Min-Soo;Lee, Gi Yong;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.3
    • /
    • pp.228-233
    • /
    • 2021
  • In this paper, we propose a method to extract and classify features of multi-channel ElectroEncephalo Graphy (EEG) that change according to various musical tempo stimuli. In the proposed method, a 3D convolutional bidirectional gated recurrent neural network extracts spatio-temporal and long time-dependent features from the 3D EEG input representation transformed through the preprocessing. The experimental results show that the proposed tempo stimuli classification method is superior to the existing method and the possibility of constructing a music-based brain-computer interface.

Local Feature Map Using Triangle Area and Variation for Efficient Learning of 3D Mesh (3차원 메쉬의 효율적인 학습을 위한 삼각형의 면적과 변화를 이용한 로컬 특징맵)

  • Na, Hong Eun;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.573-576
    • /
    • 2022
  • 본 논문에서는 삼각형 구조로 구성된 3차원 메쉬(Mesh)에서 합성곱 신경망(Convolutional Neural Network, CNN)의 정확도를 개선시킬 수 있는 새로운 학습 표현 기법을 제시한다. 우리는 메쉬를 구성하고 있는 삼각형의 넓이와 그 로컬 특징을 기반으로 학습을 진행한다. 일반적으로 딥러닝은 인공신경망을 수많은 계층 형태로 연결한 기법을 말하며, 주요 처리 대상은 오디오 파일과 이미지이었다. 인공지능에 대한 연구가 지속되면서 3차원 딥러닝이 도입되었지만, 기존의 학습과는 달리 3차원 학습은 데이터의 확보가 쉽지 않다. 혼합현실과 메타버스 시장으로 인해 3차원 모델링 시장이 증가가 하면서 기술의 발전으로 데이터를 획득할 수 있는 방법이 생겼지만, 3차원 데이터를 직접적으로 학습 표현하는 방식으로 적용하는 것은 쉽지 않다. 그렇기 때문에 본 논문에서는 산업 현장에서 사용되는 데이터인 삼각형 메쉬 구조를 바탕으로 기존 방법보다 정확도가 높은 학습 기법을 제안한다.

  • PDF

CNN Architecture for Accurately and Efficiently Learning a 3D Triangular Mesh (3차원 삼각형 메쉬를 정확하고 효율적으로 학습하기 위한 CNN 아키텍처)

  • Hong Eun Na;Jong-Hyun Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.369-372
    • /
    • 2023
  • 본 논문에서는 삼각형 구조로 구성된 3차원 메쉬(Mesh)에서 합성곱 신경망(Convolution Neural Network, CNN)을 응용하여 정확도가 높은 새로운 학습 표현 기법을 제시한다. 우리는 메쉬를 구성하고 있는 폴리곤의 edge와 face의 로컬 특징을 기반으로 학습을 진행한다. 일반적으로 딥러닝은 인공신경망을 수많은 계층 형태로 연결한 기법을 말하며, 주요 처리 대상은 1, 2차원 데이터 형태인 오디오 파일과 이미지였다. 인공지능에 대한 연구가 지속되면서 3차원 딥러닝이 도입되었지만, 기존의 학습과는 달리 3차원 딥러닝은 데이터의 확보가 쉽지 않다. 혼합현실과 메타버스 시장의 확대로 인해 3차원 모델링 시장이 증가하고, 기술의 발전으로 데이터를 획득할 수 있는 방법이 생겼지만, 3차원 데이터를 직접적으로 학습에 이용하는 방식으로 적용하는 것은 쉽지 않다. 그렇게 때문에 본 논문에서는 산업 현장에서 이용되는 데이터인 메쉬 구조를 폴리곤의 최소 단위인 삼각형 형태로 구성하여 학습 데이터를 구성해 기존의 방법보다 정확도가 높은 학습 기법을 제안한다.

  • PDF