• Title/Summary/Keyword: 3-D 모델링

Search Result 2,126, Processing Time 0.028 seconds

Development of AI-Based Body Shape 3D Modeling Technology Applicable in The Healthcare Sector (헬스케어 분야에서 활용 가능한 AI 기반 체형 3D 모델링 기술 개발)

  • Ji-Yong Lee;Chang-Gyun Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.633-640
    • /
    • 2024
  • This study develops AI-based 3D body shape modeling technology that can be utilized in the healthcare sector, proposing a system that enables monitoring of users' body shape changes and health status. Utilizing data from Size Korea, the study developed a model to generate 3D body shape images from 2D images, and compared various models to select the one with the best performance. Ultimately, by proposing a system process through the developed technology, including personalized health management, exercise recommendations, and dietary suggestions, the study aims to contribute to disease prevention and health promotion.

Development of the Noise Elimination Algorithm of Stereo-Vision Images for 3D Terrain Modeling (지반형상 3차원 모델링을 위한 스테레오 비전 영상의 노이즈 제거 알고리즘 개발)

  • Yoo, Hyun-Seok;Kim, Young-Suk;Han, Seung-Woo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.2
    • /
    • pp.145-154
    • /
    • 2009
  • For developing an Automation equipment in construction, it is a key issue to develop 3D modeling technology which can be used for automatically recognizing environmental objects. Recently, for the development of "Intelligent Excavating System(IES), a research developing the real-time 3D terrain modeling technology has been implemented from 2006 in Korea and a stereo vision system is selected as the optimum technology. However, as a result of performance tests implemented in various earth moving environment, the 3D images obtained by stereo vision included considerable noise. Therefore, in this study, for getting rid of the noise which is necessarily generated in stereo image matching, the noise elimination algorithm of stereo-vision images for 3D terrain modeling was developed. The consequence of this study is expected to be applicable in developing an automation equipments which are used in field environment.

3Dimensional Directional Relationship Modeling Using 3D String (3D 스트링을 이용한 3차원 방향관계 모델링)

  • 황종하;황수찬
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.145-147
    • /
    • 2002
  • 기존 대부분의 방향관계에 대한 연구는 2차인 이미지에서 절대적인 방향에 대한 연구가 주를 이루고 있다. 본 논문에서는 기존 2차일 방향관계 모델링 기법을 분석하고 2D 스트링 기법을 확장해서 3차인 공간상에서 방향관계를 모델링하기 위할 3D 스트링 기법을 소개한다. 그리고 3차원 공간에서 시점 기반의 방향관계 실의를 처리하기 위한 기법으로 3차원 공간을 2차원+1차원으로 표현하여 처리하는 기법에 대해 기술판다.

  • PDF

Image-based Modeling by Minimizing Projection Error of Primitive Edges (정형체의 투사 선분의 오차 최소화에 의한 영상기반 모델링)

  • Park Jong-Seung
    • The KIPS Transactions:PartB
    • /
    • v.12B no.5 s.101
    • /
    • pp.567-576
    • /
    • 2005
  • This paper proposes an image-based modeling method which recovers 3D models using projected line segments in multiple images. Using the method, a user obtains accurate 3D model data via several steps of simple manual works. The embedded nonlinear minimization technique in the model parameter estimation stage is based on the distances between the user provided image line segments and the projected line segments of primitives. We define an error using a finite line segment and thus increase accuracy in the model parameter estimation. The error is defined as the sum of differences between the observed image line segments provided by the user and the predicted image line segments which are computed using the current model parameters and camera parameters. The method is robust in a sense that it recovers 3D structures even from partially occluded objects and it does not be seriously affected by small measurement errors in the reconstruction process. This paper also describesexperimental results from real images and difficulties and tricks that are found while implementing the image-based modeler.

Development of Program for Modeling of Cross Section of Composite Rotor Blade (복합재료 로터 블레이드 단면 모델링 프로그램 개발)

  • Do, Hyung-Soo;Cho, Jin-Yeon;Park, Il-Ju;Jung, Sung-Nam;Kim, Tae-Joo;Kim, Do-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.261-268
    • /
    • 2011
  • Generally, modeling procedure of cross section of composite rotor blade is complicated and time-consuming, because it is made up of various stiffeners and multiple layers of composite materials. For efficient modeling of cross section of composite rotor blade, a modeling program so called KSec2D, which provides a user friendly GUI, is developed by using a 2D modeling algorithm based on set operation. By the developed program KSec2D, a modeling of complicated cross section of rotor blade is carried out. Through the demonstration, the usefulness of developed program in modeling procedure of cross section of composite rotor blade is verified.

Comparative Accuracy of Terrestrial LiDAR and Unmanned Aerial Vehicles for 3D Modeling of Cultural Properties (문화재 3차원 모델링을 위한 지상 LiDAR와 UAV 정확도 비교 연구)

  • Lee, Ho-Jin;Cho, Gi-Sung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.179-190
    • /
    • 2017
  • A terrestrial LiDAR survey was conducted and unmanned aerial vehicle(UAV) images were taken for target cultural properties to present the utilization measures of terrestrial LiDAR and UAV in three-dimensional modeling of cultural properties for the identification of the status and restoration of cultural properties. Then the accuracy of the point clouds generated through this process was compared, an overlap analysis of the 3D model was conducted, and a convergence model was created. According to the results, the modeling with terrestrial LiDAR is more appropriate for precise survey because 3D modeling for the detection of displacement and deformation of cultural properties requires an accuracy of mm units. And UAV model has limitation as the impossibility of detailed expression of parts with sharp unevenness such as cracks of bricks. However, it is found that the UAV model has a wide range of modeling and has the advantage of modeling of real cultural properties. Finally, the convergence model created in this study using the advantages of the terrestrial LiDAR model and the UAV model could be efficiently utilized for the basic data development of cultural properties.

Last Design for Men's Shoes using 3D Foot Scanner and 3D Printer (3D 발 스캐너와 3D 프린터를 이용한 남성화 라스트 설계)

  • Oh, Seol-Young;Suh, Dong-Ae;Kim, Hyung-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.2
    • /
    • pp.186-199
    • /
    • 2016
  • The shoe last which is the framework for the shoemaking is intensively combined with the 3D data and technologies. International shoe companies have already commercialized 3D printing technology in producing the shoe, but domestic shoe companies are still in their early stages. This study used the 3D scanning, 3D modeling and 3D printing of the high-technology to make the shoe last. This 3D producing processes should be helpful in building competitiveness in domestic shoe industry. The 3D foot scanning data of men in 30s(n=200) were collected in SizeKorea(2010). The basic statistics, factor and cluster analysis were performed. They were categorized in 3 groups by 3D foot measurement data, and the standard models were selected in each group. The cross sections in XY, YZ and XZ planes sliced from 3D scan data of the standard model were used in the sketches of the 3D shoe last modeling. The 3D shoe last was modeled by Solidworks CAD and printed by MakerBot Replicator2; a desktop 3D printer. This research showed the potential for utilization of 3D printing technology in the domestic shoe industry. The 3D producing process; 3D scanning, 3D modeling and 3D printing is expected to utilized widely in the fashion industry within the nearest future.

Modeling and Animation Implementation of 3D Humanoid base on the X3D (X3D 기만에서의 3차원 Humanoid 모델링과 애니메이션 구현)

  • 이성태;오근탁;김이선;이윤배
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.7
    • /
    • pp.1089-1094
    • /
    • 2002
  • We can travel every imaginary world and do every impossible thing via 3D character. People interest in 3D character animation for modeling like real world due to the increase of 3D game and imaginary Virtual Reality on the internet. In this paper, new framework for present of 3D character of high quality is applied. I represent 3-dimensional Humanoid modeling and animation technology and show the adequacy via simulation for various and natural representation certificate using VRML as a Web3D information type and XML.

A Study on Educational Utilization of 3D Printing : Creative Design Model-based Class (3D 프린팅의 교육적 활용 방안 연구 : 창의적 디자인 모델 기반 수업)

  • Choi, Hyungshin;Yu, Miri
    • Journal of The Korean Association of Information Education
    • /
    • v.19 no.2
    • /
    • pp.167-174
    • /
    • 2015
  • A recent increase of interests on the influence of 3D printing and low prices of 3D printers makes a high possibility of 3D printer adoption as a educational equipment in public education settings. The Ministry of Science, ICT and Future Planning and Ministry of Trade, Industry and Energy proposed '3D printing industry development strategies', and had pilot schools to include understanding of 3D printing concepts and practices in the primary, secondary and high schools' curriculum. However, even if 3D printers were provided in educational settings, the research on educational content and methods to properly react to this change is very limited. Therefore, this study reviewed various 3D modeling software because a modeling skill is a prerequisite skill to use 3D printers, and proposed a creative design spiral based teaching content that can be incorporated in elementary school contexts.

Seismic First Arrival Time Computation in 3D Inhomogeneous Tilted Transversely Isotropic Media (3차원 불균질 횡등방성 매질에 대한 탄성파 초동 주시 모델링)

  • Jeong, Chang-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.241-249
    • /
    • 2006
  • Due to the long tectonic history and the very complex geologic formations in Korea, the anisotropic characteristics of subsurface material may often change very greatly and locally. The algorithms commonly used, however, may not give sufficiently precise computational results of traveltime data particularly for the complex and strong anisotropic model, since they are based on the two-dimensional (2D) earth and/or weak anisotropy assumptions. This study is intended to develope a three-dimensional (3D) modeling algorithm to precisely calculate the first arrival time in the complex anisotropic media. Considering the complex geology of Korea, we assume 3D TTI (tilted transversely isotropy) medium having the arbitrary symmetry axis. The algorithm includes the 2D non-linear interpolation scheme to calculate the traveltimes inside the grid and the 3D traveltime mapping to fill the 3D model with first arrival times. The weak anisotropy assumption, moreover, can be overcome through devising a numerical approach of the steepest descent method in the calculation of minimum traveltime, instead of using approximate solution. The performance of the algorithm developed in this study is demonstrated by the comparison of the analytic and numerical solutions for the homogeneous anisotropic earth as well as through the numerical experiment for the two layer model whose anisotropic properties are greatly different each other. We expect that the developed modeling algorithm can be used in the development of processing and inversion schemes of seismic data acquired in strongly anisotropic environment, such as migration, velocity analysis, cross-well tomography and so on.