• Title/Summary/Keyword: 3-Chamber

Search Result 3,208, Processing Time 0.034 seconds

Study on the Characteristics of Performance and Exhaust Emissions of 3-Chamber GDI Engine (3-연소실형 GDI Engine의 성능 및 배기 배출물 특성에 관한 연구)

  • 김봉수;정남훈;진선호;배종욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.37-47
    • /
    • 2002
  • Recently gasoline direct injection method has been applied to gasoline engine to reduce fuel consumption rate by controlling fuel air mixture on lean condition by means of stratified charging, and to reduce simultaneously. Pollutant emissions especially NOx and CO by lowering the combustion temperature. But difficulty of controling local fuel air ratio at ignition area in flammability limit unavoidably appeared, because it is merely controlled by injection timing with spatial and temporal distribution of fuel mixture. In this study, the authors devised a uniquely shaped combustion chamber so called three-chamber GDI engine, intended to keep the more reliable fuel air ratio at ignition area. The combustion chamber is divided into three regions. The first region is in the rich combustion division, where the fuel is injected from the fuel injection valve and ignited by the spark plug. The second region is in the lean combustion division, where the combustion gas from the rich combustion division flows out and burns on lean condition. And the last region is in the main combustion division ie in the cylinder, where the gas from the above two combustion divisions mixed together and completes the combustion during expansion stroke. They found that the stable range of operation of three-chamber GDI engine on low-load condition exists in the lean area of average equivalence ratio. And they also found that the reformed engine reveals less specific fuel consumption and less pollutant emissions compared with conventional carburettor type gasoline engine.

Effect of cooling water temperature on the temperature changes in pulp chamber and at handpiece head during high-speed tooth preparation

  • Farah, Ra'fat I.
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.1
    • /
    • pp.3.1-3.10
    • /
    • 2019
  • Objectives: It was the aim of this study to evaluate the effect of cooling water temperature on the temperature changes in the pulp chamber and at the handpiece head during high-speed tooth preparation using an electric handpiece. Materials and Methods: Twenty-eight intact human molars received a standardized occlusal preparation for 60 seconds using a diamond bur in an electric handpiece, and one of four treatments were applied that varied in the temperature of cooling water applied (control, with no cooling water, $10^{\circ}C$, $23^{\circ}C$, and $35^{\circ}C$). The temperature changes in the pulp chamber and at the handpiece head were recorded using K-type thermocouples connected to a digital thermometer. Results: The average temperature changes within the pulp chamber and at the handpiece head during preparation increased substantially when no cooling water was applied ($6.8^{\circ}C$ and $11.0^{\circ}C$, respectively), but decreased significantly when cooling water was added. The most substantial drop in temperature occurred with $10^{\circ}C$ water ($-16.3^{\circ}C$ and $-10.2^{\circ}C$), but reductions were also seen at $23^{\circ}C$ ($-8.6^{\circ}C$ and $-4.9^{\circ}C$). With $35^{\circ}C$ cooling water, temperatures increased slightly, but still remained lower than the no cooling water group ($1.6^{\circ}C$ and $6.7^{\circ}C$). Conclusions: The temperature changes in the pulp chamber and at the handpiece head were above harmful thresholds when tooth preparation was performed without cooling water. However, cooling water of all temperatures prevented harmful critical temperature changes even though water at $35^{\circ}C$ raised temperatures slightly above baseline.

Evaluation of the combustion chamber for burning candle and measuring the emission factor of its’ combustion products (양초 연소 시 발생되는 오염물질 방출계수 측정을 위한 연소실 제작과 평가)

  • Lim, Hyung-Jin;Kim, Man-Goo
    • Analytical Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.236-245
    • /
    • 2015
  • Recently, candles have been widely used to create a romantic atmosphere and to heat tea. In this study, a small combustion chamber for candle was designed using an 0.008 m3 bell jar. The emission factors of combustion products were then measured. The combustion chamber includes a glass dish, which prevents candle flame from affecting the composition of the gas emitted through the exhaust outlet. The outlet in the combustion chamber was designed as a cone shape, and it was lengthened to prevent flow from the outside, which could affect the homogeneous composition of the exhaust gas. The temperature at the outlet of the chamber was 34 ℃~41℃. The major combustion products of the candle, such as such aldehydes and acids, contained oxygen. The mass specific emission rates of benzene, toluene, ethylbenzene, and TVOC were 0.04 μg/g, 0.01 μg/g, 0.02 μg/g, and 3.81, respectively. The mass specific emission rates of formaldehyde, acetaldehyde and benzaldehyde were 4.48 μg/g, 1.09 μg/g, and 0.67 μg/g, respectively. Considering the different compositions of the candle samples, their mass specific emission rates were similar to those obtained by using a large chamber 0.17 m3~50 m3 in size.

A STUDY ON THE ANATOMY OF THE PULP CHAMBR FLOOR OF THE PERMANENT MANDIBULAR FIRST MOLAR (하악 제1대구치 치수저의 해부학적 고찰)

  • Kwon, Hyuk-Choon
    • The Journal of the Korean dental association
    • /
    • v.22 no.5 s.180
    • /
    • pp.423-427
    • /
    • 1984
  • A total of 114 extracted human mandibular first molars were used to study the configuration of the floor of the chamber. The specimens were ground and the pulp chamber was examined with a magnifier and explored with sharp explorer. The study showed the shape of the pulp chamber, number of root canals, and the type of canal orifice. The results were as follows; 1. In so far as observing the shape of the pulp chamber of the teeth, 58.8% of the teeth were square, 34.2% were triangle and 7.0% were ovoid shape. 2. 58.8% of the specimens have 4 root canal orifices, 34.2% have 3 root canal orifices, 7.0% have 2 root canal orifices. 3. 41.2% of the specimens show 'H' shape, 17.6% show 'Square' shape, 31.6% show 'T' shape, 2.0% show 'reverse-T' shape and 7.0% show 'I' shape.

  • PDF

A Study on Piezocone Test using a Calibration Chamber (Calibration Chamber를 이용한 피에조콘 시험에 관한 실험연구)

  • Kim, Dae-Kyu;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.3
    • /
    • pp.99-106
    • /
    • 2000
  • 피에조콘 관입 및 소산 시험이 Calibration Chamber 및 미니 피에조콘을 이용하여 수행되었다. 시험은 정규압밀 및 과압밀 점토에 대하여 정지토압 상태에서 실시되었으며 UI (filter element at cone tip), U2 (filter element above cone base) 두 종류의 피에조콘이 사용되었고 0.3cm/sec, 0.6cm/sec의 관입속도가 적용되었다. 오실로스코프를 사용하여 소산시험 초기 간극수압의 급격한 변화를 측정하였다. 시험결과로부터 관입속도, filter element 위치, 과압밀비가 피에조콘 관입 및 소산시험의 결과에 미치는 영향을 고찰하였으며 입도분포시험을 실시하여 관입시험 전후의 입도분포 치이를 고찰하였다.

  • PDF

Die Stress and Process Analysis for Condenser Tube Extrusion according to Chamber Height (접합실 높이에 따른 컨덴서 튜브 직접압출 공정 및 금형강도 해석)

  • Lee, J.M.;Kim, B.M.;Jung, Y.D.;Jo, H.;Jo, H.H.
    • Transactions of Materials Processing
    • /
    • v.12 no.3
    • /
    • pp.214-220
    • /
    • 2003
  • In the case of hollow cylinder extrusion using porthole die, the effects of extrusion parameters-temperature, the speed of extrusion, the shape of the die and mandrel-on metal flow in porthole die extrusion of aluminum have been investigated. There have been few studies about condenser tube extruded by porthole die. This study was designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection according to variation of chamber length in porthole die. The welding chamber height in condenser tube was calculated by using finite element method. Forming analysis results for condenser tube would provide useful information for the optimal design of porthole die.

Cooling Performance Analysis of a Sub-scale Calorimeter (축소형 칼로리미터의 냉각성능 해석)

  • 조원국;문윤완
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.8-14
    • /
    • 2003
  • A cooling performance analysis has been made in the 8-channel calorimeter based on sub-scale KSR-III engine. Three-dimensional heat transfer analysis in cooling channels has been performed using the heat flux distribution through the chamber wall predicted from axi-symmetric compressible flow inside the combustion chamber. The heat flux distribution is verified against the published literature. Presented for the development and operation of the calorimeter are the coolant pressure drop, coolant temperature rise and the maximum chamber wall temperature. Required coolant flow rate is determined for given chamber pressure. Cooling performance is also predicted for temperature dependant coolant properties.

Generation and Decay Phenomena of Environmental Tobacco Smoke in Controlled Experimental Atmosphere Chamber (환경이 조절되는 Chamber 내에서 Environmental Tobacco Smoke의 생성과 감소 현상)

  • 이문수;나도영;안기영;이규서
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.18 no.2
    • /
    • pp.170-176
    • /
    • 1996
  • This paper describes the generation and decay phenomena of gas, vapor and particulate phase components of environmental tobacco smoke in 18 m3 controlled experimental atmosphere chamber. Real time-weighted average concentration ratios of markers were determinated at no ventilation rates and sampling durations of starting to smoking 45 min. Average concentration of major ETS markers was no significant on the mainstream smoke contents of commercial cigarette and decay ratios were dependent on first order kinetic. RSP/nicotine, solanesol and 3-EP were good predictors of ETS concentration in the public indoor field. The concentration ratio of vapor phase and particulate phase components is highly variable to assessment of indoor air quality with ETS. Key words : ETS, chamber study, ETS markers.

  • PDF

Prevention of P-i Interface Contamination Using In-situ Plasma Process in Single-chamber VHF-PECVD Process for a-Si:H Solar Cells

  • Han, Seung-Hee;Jeon, Jun-Hong;Choi, Jin-Young;Park, Won-Woong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.204-205
    • /
    • 2011
  • In thin film silicon solar cells, p-i-n structure is adopted instead of p/n junction structure as in wafer-based Si solar cells. PECVD is a most widely used thin film deposition process for a-Si:H or ${\mu}c$-Si:H solar cells. For best performance of thin film silicon solar cell, the dopant profiles at p/i and i/n interfaces need to be as sharp as possible. The sharpness of dopant profiles can easily achieved when using multi-chamber PECVD equipment, in which each layer is deposited in separate chamber. However, in a single-chamber PECVD system, doped and intrinsic layers are deposited in one plasma chamber, which inevitably impedes sharp dopant profiles at the interfaces due to the contamination from previous deposition process. The cross-contamination between layers is a serious drawback of a single-chamber PECVD system in spite of the advantage of lower initial investment cost for the equipment. In order to resolve the cross-contamination problem in single-chamber PECVD systems, flushing method of the chamber with NH3 gas or water vapor after doped layer deposition process has been used. In this study, a new plasma process to solve the cross-contamination problem in a single-chamber PECVD system was suggested. A single-chamber VHF-PECVD system was used for superstrate type p-i-n a-Si:H solar cell manufacturing on Asahi-type U FTO glass. A 80 MHz and 20 watts of pulsed RF power was applied to the parallel plate RF cathode at the frequency of 10 kHz and 80% duty ratio. A mixture gas of Ar, H2 and SiH4 was used for i-layer deposition and the deposition pressure was 0.4 Torr. For p and n layer deposition, B2H6 and PH3 was used as doping gas, respectively. The deposition temperature was $250^{\circ}C$ and the total p-i-n layer thickness was about $3500{\AA}$. In order to remove the deposited B inside of the vacuum chamber during p-layer deposition, a high pulsed RF power of about 80 W was applied right after p-layer deposition without SiH4 gas, which is followed by i-layer and n-layer deposition. Finally, Ag was deposited as top electrode. The best initial solar cell efficiency of 9.5 % for test cell area of 0.2 $cm^2$ could be achieved by applying the in-situ plasma cleaning method. The dependence on RF power and treatment time was investigated along with the SIMS analysis of the p-i interface for boron profiles.

  • PDF

Removal of residual VOCs in a collection chamber using decompression for analysis of large volatile sample

  • Lee, In-Ho;Byun, Chang Kyu;Eum, Chul Hun;Kim, Taewook;Lee, Sam-Keun
    • Analytical Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.23-35
    • /
    • 2021
  • In order to measure the volatile organic compounds (VOCs) of a sample which is too large to use commercially available chamber, a stainless steel vacuum chamber (VC) (with an internal diameter of 205 mm and a height of 50 mm) was manufactured and the temperature of the chamber was controlled using an oven. After concentrating the volatiles of the sample in the chamber by helium gas, it was made possible to remove residual volatile substances present in the chamber under reduced pressure ((2 ± 1) × 10-2 mmHg). The chamber was connected to a purge & trap (P&T) using a 6 port valve to concentrate the VOCs, which were analyzed by gas chromatography-mass spectrometry (GC-MS) after thermal desorption (VC-P&T-GC-MS). Using toluene, the toluene recovery rate of this device was 85 ± 2 %, reproducibility was 5 ± 2 %, and the detection limit was 0.01 ng L-1. The method of removing VOCs remaining in the chamber with helium and the method of removing those with reduced pressure was compared using Korean drinking water regulation (KDWR) VOC Mix A (5 μL of 100 ㎍ mL-1) and butylated hydroxytoluene (BHT, 2 μL of 500 ㎍ mL-1). In case of using helium, which requires a large amount of gas and time, reduced pressure ((2 ± 1) × 10-2 mmHg) only during the GC-MS running time, could remove VOCs and BHT to less than 0.1 % of the original injection concentration. As a result of analyzing volatile substances using VC-P&T-GC-MS of six types of cell phone case, BHT was detected in four types and quantitatively analyzed. Maintaining the chamber at reduced pressure during the GC-MS analysis time eliminated memory effect and did not affect the next sample analysis. The volatile substances in a cell phone case were also analyzed by dynamic headspace (HT3) and GC-MS, and the results of the analysis were compared with those of VC-P&T-GC-MS. Considering the chamber volume and sample weight, the VC-P&T configuration was able to collect volatile substances more efficiently than the HT3. The VC-P&T-GC-MS system is believed to be useful for VOCs measurement of inhomogeneous large sample or devices used inside clean rooms.