• Title/Summary/Keyword: 3-Axis Sensor

Search Result 395, Processing Time 0.038 seconds

Modeling of an embedded carbon nanotube based composite strain sensor

  • Boehle, M.;Pianca, P.;Lafdi, K.;Chinesta, F.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.263-273
    • /
    • 2015
  • Carbon nanotube strain sensors, or so called "fuzzy fiber" sensors have not yet been studied sufficiently. These sensors are composed of a bundle of fiberglass fibers coated with CNT through a thermal chemical vapor deposition process. The characteristics of these fuzzy fiber sensors differ from a conventional nanocomposite in that the CNTs are anchored to a substrate fiber and the CNTs have a preferential orientation due to this bonding to the substrate fiber. A numerical model was constructed to predict the strain response of a composite with embedded fuzzy fiber sensors in order to compare result with the experimental results obtained in an earlier study. A comparison of the numerical and experimental responses was conducted based on this work. The longitudinal sensor output from the model matches nearly perfectly with the experimental results. The transverse and off-axis tests follow the correct trends; however the magnitude of the output does not match well with the experimental data. An explanation of the disparity is proposed based on microstructural interactions between individual nanotubes within the sensor.

Design and Performance Analysis of an Off-Axis Three-Mirror Telescope for Remote Sensing of Coastal Water (연안 원격탐사를 위한 비축 삼반사경 설계와 성능 분석)

  • Oh, Eunsong;Kang, Hyukmo;Hyun, Sangwon;Kim, Geon-Hee;Park, YoungJe;Choi, Jong-Kuk;Kim, Sug-Whan
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.3
    • /
    • pp.155-161
    • /
    • 2015
  • We report the design and performance analysis of an off-axis three-mirror telescope as the fore optics for a new hyperspectral sensor aboard a small unmanned aerial vehicle (UAV), for low-altitude coastal remote sensing. The sensor needs to have at least 4 cm of spatial resolution at an operating altitude of 500 m, $4^{\circ}$ field of view (FOV), and a signal to noise ratio (SNR) of 100 at 660 nm. For these performance requirements, the sensor's optical design has an entrance pupil diameter of 70 mm and an F-ratio of 5.0. The fore optics is a three-mirror system, including aspheric primary and secondary mirrors. The optical performance is expected to reach $1/15{\lambda}$ in RMS wavefront error and 0.75 in MTF value at 660 nm. Considering the manufacturing and assembling phase, we determined the alignment compensation due to the tertiary mirror from the sensitivity, and derived the tilt-tolerance range to be 0.17 mrad. The off-axis three-mirror telescope, which has better performance than the fore optics of other hyperspectral sensors and is fitted for a small UAV, will contribute to ocean remote-sensing research.

Vehicle Displacement Estimation By GPS and Vision Sensor (영상센서/GPS에 기반한 차량의 이동변위 추정)

  • Kim, Min-Woo;Lim, Joon-Hoo;Park, Je-Doo;Kim, Hee-Sung;Lee, Hyung-Keun
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.3
    • /
    • pp.417-425
    • /
    • 2012
  • It is well known that GPS cannot provide positioning results if sufficient number of visible satellites are not available. To overcome this weak point, attentions have been recently moved to hybrid positioning methods that augments GPS with other sensors. As an extension of hybrid positiong methods, this paper proposes a new method that combines GPS and vision sensor to improve availability and accuracy of land vehicle positioning. The proposed method does not require any external map information and can provide position solutions if more than 2 navigation satellites are visible. To evaluate the performance of the proposed method, an experiment result with real measurements is provided and a result shows that accumulated error of n-axis is almost 2.5meters and that of e-axis is almost 3meters in test section.

Error Correction of Real-time Situation Recognition using Smart Device (스마트 기기를 이용한 실시간 상황인식의 오차 보정)

  • Kim, Tae Ho;Suh, Dong Hyeok;Yoon, Shin Sook;Ryu, KeunHo
    • Journal of Digital Contents Society
    • /
    • v.19 no.9
    • /
    • pp.1779-1785
    • /
    • 2018
  • In this paper, we propose an error correction method to improve the accuracy of human activity recognition using sensor event data obtained by smart devices such as wearable and smartphone. In the context awareness through the smart device, errors inevitably occur in sensing the necessary context information due to the characteristics of the device, which degrades the prediction performance. In order to solve this problem, we apply Kalman filter's error correction algorithm to compensate the signal values obtained from 3-axis acceleration sensor of smart device. As a result, it was possible to effectively eliminate the error generated in the process of the data which is detected and reported by the 3-axis acceleration sensor constituting the time series data through the Kalman filter. It is expected that this research will improve the performance of the real-time context-aware system to be developed in the future.

Detection The Behavior of Smartphone Users using Time-division Feature Fusion Convolutional Neural Network (시분할 특징 융합 합성곱 신경망을 이용한 스마트폰 사용자의 행동 검출)

  • Shin, Hyun-Jun;Kwak, Nae-Jung;Song, Teuk-Seob
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1224-1230
    • /
    • 2020
  • Since the spread of smart phones, interest in wearable devices has increased and diversified, and is closely related to the lives of users, and has been used as a method for providing personalized services. In this paper, we propose a method to detect the user's behavior by applying information from a 3-axis acceleration sensor and a 3-axis gyro sensor embedded in a smartphone to a convolutional neural network. Human behavior differs according to the size and range of motion, starting and ending time, including the duration of the signal data constituting the motion. Therefore, there is a performance problem for accuracy when applied to a convolutional neural network as it is. Therefore, we proposed a Time-Division Feature Fusion Convolutional Neural Network (TDFFCNN) that learns the characteristics of the sensor data segmented over time. The proposed method outperformed other classifiers such as SVM, IBk, convolutional neural network, and long-term memory circulatory neural network.

MCU Module Design for Posture Control based on ESP32 (ESP32 기반 자세 제어용 MCU 모듈 설계)

  • Kim, Gwan-hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.289-290
    • /
    • 2021
  • Recently, with the advent of the 4th industrial revolution, the role of robots is increasing, and the use of robots is also increasing in the service field. The most popular model for nonlinear research related to robots is the inverted pendulum system. A balancing robot using an inverted pendulum system is a representative nonlinear system and is mainly used to study control theory and other kinematic structures. In this paper, the state of the robot is measured using the 3-axis acceleration sensor (ADXL345) and 3-axis digital output gyro sensor (ITG-3200) or HMC5883L required for balancing robot control, and using the ESP32-WROOM-32 module. I want to design an MCU module that can control a balancing robot. In addition, by using the ESP32-WROOM-32 MCU module, we intend to design an MCU module that can monitor the state of the balancing robot based on WiFi or Bluetooth.

  • PDF

Recognition of Car Driving Patterns using a 3-Axis Accelerometer and Orientation Sensor (3축 가속도 센서와 방향센서를 이용한 운전패턴 인식)

  • Song, Chung-Won;Nam, Kwang-Woo;Lee, Chang-Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.01a
    • /
    • pp.7-10
    • /
    • 2012
  • 본 논문에서는 스마트폰을 이용하여 도로 주행 정보를 기록하고 운전자에게 패턴 별 주행정보를 제공하는 라이프로그(Lifelog) 형태의 서비스에 목적을 두고 있다. 운전자의 도로 주행 데이터를 데이터베이스화한 이 정보는 다양하게 이용될 수 있다. 주행 패턴 인식은 이벤트 구간 검출 과정을 통한 패턴 구간을 검출하고 가속도 센서와 방향 센서, 즉 멀티 센서 기반으로 주행패턴을 인식한다. 주행 패턴을 분석 후 시간 정보를 이용하여 촬영된 영상 데이터에서의 패턴 구간 영상을 같이 제공한다. 이렇게 패턴 구간의 센서 스트리밍 정보와 영상을 제공하면 운전자의 운전 성향 및 주행 기록을 분석하는데 이용될 수 있다. 따라서 주행패턴 인식 알고리즘을 프로토타입으로 제안한다.

  • PDF

Development of a TOF LADAR Sensor and A Study on 3D Infomation Acquisition using Single Axis Driving Device (TOF기반의 2D LADAR 센서 개발 및 1축 구동장치를 활용한 3D 정보 획득에 대한 연구)

  • Kwon, JeongHoon;Won, Mooncheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.733-742
    • /
    • 2017
  • LADARs are used for important sensors in various applications, for example, terrain information sensors in self driving cars, safety sensors for factory automation, and 3D map constructions. This study develop important component technologies to improve the performance of a LADAR system under development in Korea. The component technologies include diode temperature regulation, reducing distance error in outdoor environment, and signal processing technique for better detection of distant objects. This paper explains the suggested component technologies and experimental results of the developed LADAR system. Also, the developed system is operated and tested an a single axis driving platform to acquire 3D information from 2D LADAR.

Study of Fall Detection System According to Number of Nodes of Hidden-Layer in Long Short-Term Memory Using 3-axis Acceleration Data (3축 가속도 데이터를 이용한 장단기 메모리의 노드수에 따른 낙상감지 시스템 연구)

  • Jeong, Seung Su;Kim, Nam Ho;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.516-518
    • /
    • 2022
  • In this paper, we introduce a dependence of number of nodes of hidden-layer in fall detection system using Long Short-Term Memory that can detect falls. Its training is carried out using the parameter theta(θ), which indicates the angle formed by the x, y, and z-axis data for the direction of gravity using a 3-axis acceleration sensor. In its learning, validation is performed and divided into training data and test data in a ratio of 8:2, and training is performed by changing the number of nodes in the hidden layer to increase efficiency. When the number of nodes is 128, the best accuracy is shown with Accuracy = 99.82%, Specificity = 99.58%, and Sensitivity = 100%.

  • PDF

A Research for Removing ECG Noise and Transmitting 1-channel of 3-axis Accelerometer Signal in Wearable Sensor Node Based on WSN (무선센서네트워크 기반의 웨어러블 센서노드에서 3축 가속도 신호의 단채널 전송과 심전도 노이즈 제거에 대한 연구)

  • Lee, Seung-Chul;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.137-144
    • /
    • 2011
  • Wireless sensor network(WSN) has the potential to greatly effect many aspects of u-healthcare. By outfitting the potential with WSN, wearable sensor node can collects real-time data on physiological status and transmits through base station to server PC. However, there is a significant gap between WSN and healthcare. WSN has the limited resource about computing capability and data transmission according to bio-sensor sampling rates and channels to apply healthcare system. If a wearable node transmits ECG and accelerometer data of 4 channel sampled at 100 Hz, these data may occur high loss packets for transmitting human activity and ECG to server PC. Therefore current wearable sensor nodes have to solve above mentioned problems to be suited for u-healthcare system. Most WSN based activity and ECG monitoring system have been implemented some algorithms which are applied for signal vector magnitude(SVM) algorithm and ECG noise algorithm in server PC. In this paper, A wearable sensor node using integrated ECG and 3-axial accelerometer based on wireless sensor network is designed and developed. It can form multi-hop network with relay nodes to extend network range in WSN. Our wearable nodes can transmit 1-channel activity data processed activity classification data vector using SVM algorithm to 3-channel accelerometer data. ECG signals are contaminated with high frequency noise such as power line interference and muscle artifact. Our wearable sensor nodes can remove high frequency noise to clear original ECG signal for healthcare monitoring.