• 제목/요약/키워드: 3-Axis Sensor

검색결과 395건 처리시간 0.027초

A Force/Moment Direction Sensor and Its Application in Intuitive Robot Teaching Task

  • Park, Myoung-Hwan;Kim, Sung-Joo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권4호
    • /
    • pp.236-241
    • /
    • 2001
  • Teach pendant is the most widely used means of robot teaching at present. Despite the difficulties of using the motion command buttons on the teach pendant, it is an economical, robust, and effective device for robot teaching task. This paper presents the development of a force/moment direction sensor named COSMO that can improve the teach pendant based robot teaching. Robot teaching experiment of a six axis commercial robot using the sensor is described where operator holds the sensor with a hand, and move the robot by pushing, pulling, and twisting the sensor in the direction of the desired motion. No prior knowledge of the coordinate system is required. The function of the COSMO sensor is to detect the presence f force and moment along the principal axes of the sensor coordinate system. The transducer used in the sensor is micro-switch, and this intuitive robot teaching can be implemented at a very low cost.

  • PDF

Fabrication and Characteristics of Micro-Electro-Mechanical-System-Based Gas Flow Sensor

  • Choi, Ju-Chan;Lee, June-Kyoo;Kong, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • 제20권6호
    • /
    • pp.363-367
    • /
    • 2011
  • This paper proposes a highly-sensitive gas flow sensor with a simple structure. The sensor is composed of a micro-heater for heating the gas medium and a pair of temperature sensors for detecting temperature differences due to gas flow in a sealed chamber on one axis. Operation of the gas flow sensor depends on the transfer of heat through the air medium. The proposed gas flow sensor has the capability to measure gas flow rates <5 $cm^3$/min with a resolution of approximately 0.01 $cm^3$/min. Furthermore, this paper reports some additional experiment results, including the sensitivity of the proposed gas flow sensor as a function of operating current and the flow of different types of gas(oxygen, carbon dioxide, and nitrogen). The fabrication process of the proposed sensor is very simple, making it a good candidate for mass production.

Design and Implementation for Motion Control System with Precise Driving Mechanism (정밀구동메커니즘 적용 모션제어시스템 설계 및 구현)

  • Lee, Sang-Kyung;Lee, Jun-Yeong;Choi, Yun-Seok;Park, Hong Bea
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • 제8권3호
    • /
    • pp.129-136
    • /
    • 2013
  • In this paper, a motion control system based on 2-axis gimbal system is designed and implemented to drive a high speed and precision. The proposed system consists of the RS-422 interface, 2-axis gimbal platform, servo control unit integrated with a high speed DSP chip-set, servo amplifier unit, potentiometer sensor unit, and resolver sensor unit. The servo control unit using the high speed DSP firmware is designed to get a fast response without an overshoot with step input and a RMS error of low probability with ramp input. The servo amplifier unit using a voltage control is designed to resolve the zero-crossing distortion for precise motion. To verify the performance and stability of the implemented system, experiments are performed through a measurement of the time and frequency domain response in a laboratory environment by using a PXI(PCI eXtentions for Instrumentation).

Development of Positioning System Based on Auto VRS-GPS Surveying

  • Choi, Hyun;Kim, Young-Jong;Park, Woo-Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • 제32권3호
    • /
    • pp.253-259
    • /
    • 2014
  • There has been a need for replacing human labors with a robot in such dangerous and hard jobs of various construction sites. For that reason, many researches have been made about the high quality robot, which performs its duty instead of human labors. This study is about auto surveying system development based on VRS-GPS which enables autodriving in dangerous areas where it's difficult for humans to measure directly. This study is about the auto-surveying system development, based on VRS-GPS, which enables auto-drive in dangerous areas, whereas difficult for humans to measure directly. The GPS is made with GRXI and SHC250 controllers of the SOKKIA company. The auto surveying system is composed of DPS module, geomagnetism sensor, bluetooth, gimbals, IMU, etc to automatic drive via enter into a route of position. The developed auto surveying system has installed the carmeras for front and vertical axis as well as systems to grasp situation of surveying with smartphone in real time. The result from analysed RMSE of auto surveying system and VRS-GPS surveying is 0.0169m of X-axis and 0.0246m of Y-axis.

A 3-D Position Compensation Method of Industrial Robot Using Block Interpolation (블록 보간법을 이용한 산업용 로봇의 3차원 위치 보정기법)

  • Ryu, Hang-Ki;Woo, Kyung-Hang;Choi, Won-Ho;Lee, Jae-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제13권3호
    • /
    • pp.235-241
    • /
    • 2007
  • This paper proposes a self-calibration method of robots those are used in industrial assembly lines. The proposed method is a position compensation using laser sensor and vision camera. Because the laser sensor is cross type laser sensor which can scan a horizontal and vertical line, it is efficient way to detect a feature of vehicle and winding shape of vehicle's body. For position compensation of 3-Dimensional axis, we applied block interpolation method. For selecting feature point, pattern matching method is used and 3-D position is selected by Euclidean distance mapping between 462 feature values and evaluated feature point. In order to evaluate the proposed algorithm, experiments are performed in real industrial vehicle assembly line. In results, robot's working point can be displayed 3-D points. These points are used to diagnosis error of position and reselecting working point.

Extended Kalman Filtering for I.M.U. using MEMs Sensors (반도체 센서의 확장칼만필터를 이용한 자세추정)

  • Jeon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제10권4호
    • /
    • pp.469-475
    • /
    • 2015
  • This paper describes about the method for designing an extended Kalman filter to accurately measure the position of the spatial-phase system using a semiconductor sensor. Spatial position is expressed by the correlation of the rotated coordinate system attached to the body from the inertia coordinate system (a fixed coordinate system). To express the attitude, quaternion was adapted as a state variable, Then, the state changes were estimated from the input value which was measured in the gyro sensor. The observed data is the value obtained from the acceleration sensor. By matching between the measured value in the acceleration sensor and the predicted calculation value, the best variable was obtained. To increase the accuracy of estimation, designation of the extended Kalman filter was performed, which showed excellent ability to adjust the estimation period relative to the sensor property. As a result, when a three-axis gyro sensor and a three-axis acceleration sensor were adapted in the estimator, the RMS(Root Mean Square) estimation error in simulation was retained less than 1.7[$^{\circ}$], and the estimator displayed good property on the prediction of the state in 100 ms measurement period.

Arc-Flash Detection Sensor Based on Surface Coupling of Plastic Optical Fiber (플라스틱 광섬유 표면 입사 현상을 이용한 아크플래시 검출 광센서)

  • Jeong, Hoonil;Kim, Myoung Jin;Kim, Young Ho;Kim, Youngwoong;Rho, Byung Sup
    • Journal of Sensor Science and Technology
    • /
    • 제25권3호
    • /
    • pp.208-212
    • /
    • 2016
  • In this work, a loop sensor for Arc-Flash detections has been developed in order to trip a circuit breaker within 2.5 ms after an Arc-Flash event. For an efficient capturing of the flash light, plastic optical fibers, where light attenuations are larger than those in silica-based ones, with different diameters and surface conditions were utilized. The performance was comparatively analyzed with those of a point sensor and a commercialized product. The point sensor module was designed for hemisphere-like capturings of Arc-Flashes larger than 3 kA at 2 meters from the sensor. On the other hand, the loop sensor allowed 360-degree-detections around the fiber axis and the measurement range was dependent on the length of the fiber connected to the sensor module. The trip-level-dependent brightness measurement results showed that the fabricated point sensor and loop sensor satisfied a brightness condition, 10~40 klux, and the responses of the system to Arc-Flashes were completed within 2.5 ms.

Implementation of Mobile Robot Platform Based on Attitude Reference System for Pan-tilt Camera Control (팬틸트 카메라 제어를 위한 자세측정 장치 기반 이동로봇플랫폼 구현)

  • Park, Se-Jun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제16권2호
    • /
    • pp.201-206
    • /
    • 2016
  • Aircraft have a cross axis of the three each other for maintenance of aircraft position. It is called roll axis, pitch axis and yaw axis. Attitude reference system is a sensor for detecting a change of the three axis. In this paper, mobile robot platform install part of Pan-tilt and HMD attitude reference system, because of we use control camera. The acceleration sensor is very weak a lot of noise to vibration, also problem with data from process of mapping to the data problems to arise. However to solve this problem, we removed the average filter and Cosine Interpolation for Pan-tilt. Using capacity evaluation for outdoor environment for we are proposing. Mobile robot has HMD and equipped Pan-tilt. We control mobile robot camera. In this experiment result is little bit delay happening, however Pan-tilt camera is relatively stable control checking. Also, we will checking any terrain and slopes is no problem for mobile robot driving skills.

A Study on the Development of Two Axes Sun Tracking System for the Parabolic Dish Concentrator (Parabolic Dish형 태양열 집열기를 위한 2축 태양추적장치의 개발에 관한 연구)

  • Park, Y.C.;Kang, Y.H.
    • Solar Energy
    • /
    • 제19권4호
    • /
    • pp.81-91
    • /
    • 1999
  • The work presented here is a design and development of sun tracking system for the parabolic dish concentrator. Parabolic dish concentrator is mounted on azimuth and elevation tracking mechanism, and controlled to track the sun with computed and measured sun positions. Sun tracking mechanism is composed of 1/30000 speed reducer(3 stages) and 400W AC servomotor for each axis. The nominal tracking speed of each axis is ${\pm}0.6^{\circ}/sec$ and the system has a driving range of $340^{\circ}$ in azimuth and of $135^{\circ}$ in elevation. Sun tracking control system consists of sun sensor, wind speed and direction measurement system, AC servomotor position control system and personal computer as a master controller. Sun sensor detects the sun located within ${\pm}50^{\circ}$ measured from the sun sensor normal direction. Computer computes the sun position, sunrise and sunset times and controls the orientation of parabolic dish concentrator through the AC servomotor position control system. It also makes a decision of whether the system should follow the sun or not based on the information collected from sun sensor and wind speed and direction measurement system. The sun tracking system developed in this work is implemented for the experimental work and shows a good sun tracking performance.

  • PDF