• Title/Summary/Keyword: 3-Aminopropyltriethoxysilane

Search Result 53, Processing Time 0.027 seconds

A Study on Curing Reaction of 1-Chlorobutadiene-Butadiene Copolymer by Moisture (1-Chlorobutadiene-Butadiene Copolymer의 수가교반응(水架橋反應)에 관한 연구(硏究)(II))

  • Yoo, Chong-Sun;Paik, Nam-Chul
    • Elastomers and Composites
    • /
    • v.22 no.4
    • /
    • pp.305-313
    • /
    • 1987
  • In this study, as one of the developing ways of the functional elastomer, improvement of the functionality of 1-Chlorobutadiene-Butadiene Copolymer(CB-BR) was attempt through curing reaction by moisture. The curing reaction of CB-BR was determined an use of $\gamma$-Aminopropyltriethoxysilane(APS) and $\gamma$-Aminopropylmethyldiethoxysilane(ADS) as a crosslinking agent with filler at so the uncrosslinked elastomer was exposured in the air and curing reaction by moisture in the air was studied. The results obtained are as follows. 1. APS was more efficient than ADS as a crosslinking agent for CB-BR 2. Optimum amount of APS for moisture cured elastomer was r=1.5(at the ratio of $[APS]/[Cl^*]$) also in case(r=1.5), elastomer formed after soaking $T_{72}$ had similar physical properties with elastomer crosslinked by sulfur and it was very good. 3. Uncrosslinked elastomer(CB-BR+APS+Silica) was easily crosslinked by exposure to the air, and the physical properties was also satisfactory.

  • PDF

Studies on Conductive Polypyrrole Nanowires Fabricated with DNA templates (DNA를 형틀로 이용한 전도성 Polypyrrole Nanowire의 제작 연구)

  • Moon, Hock-Key;Roh, Yong-Han
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.178-179
    • /
    • 2006
  • 나노 크기를 가지는 DNA 분자를 template로 사용하여 전도성 고분자의 일종인 polypyrrole nanowire를 합성하였다. 본 논문에서 합성된 polypyrrole nanowire는 단량체인 pyrrole과 산화제와의 화학적인 반응에 의해 만들어졌다. 먼저 DNA 분자를 APTES(3-aminopropyltriethoxysilane) modified Si surface 위에 정렬한다. 그리고 이 기판을 농도를 달리한 pyrrole solution에서 incubationn한다. 마지막으로 APS (ammonium persulfate)와 반응시켜 conductive nanowire를 합성하였다. SEM을 이용하여 silicon 기판위에 1차원적으로 정렬된 나노 크기를 가지는 polypyrrole nanowire를 관찰할수 있었다. 그리고 pyrrole의 농도에 따라 nanowire의 uniformity를 조절할 수 있었다.

  • PDF

Studies on the Optimum Surface Treatment Conditions and the Interfacial Bond Strength of Glass fiber/Nylon 6 Composites (유리섬유/Nylon 6 복합재료의 표면처리 최적조건과 개별결합력에 관한 연구)

  • 나성기;박종신
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1997.04a
    • /
    • pp.26-31
    • /
    • 1997
  • 유리섬유/nylon 6 복합재료의 계면결합강도를 증가시키기 위하여 r-APS(r-Aminopropyltriethoxysilane)로 유리섬유의 표면을 처리 하였다. 이때 표면처리의 최적 조건을 찾기위해서 처리후 기기분석과 계면결합강도 측정 등을 하였다. 농도, pH, 처리시간, 온도를 변화시키면서 표면처리를 한 후 흡착량을 살펴본 결과 처리 농도에 의해서는 흡착량이 단조증가하였으며 처리시간에 따라서는 5분정도에서, 처리온도에 의해서는 30C 부근에서 최대 흡착량을 보였다. 또한 pH에 따른 흡착량은 silane의 고유 pH인 10.5부근에서 최대치를 나타냈다. FR-IR 분석에 의하면 NH2의 NH3 bending mode가 1607cm-1, 1575cm-1에서 나타났으며 SiOH의 SiO band는 960cm-1에서 나타났다. XPS를 통해서는 N ls와 Si 2p의 존재를 확인할 수 있었다. 표면처리된 유리섬유와 matrix인 nylon 6를 이용해 단섬유내장시편을 만들어 fragmentation test를 한 결과 계면결합강도는 약 5분의 처리시간과 1%(wt%)의 농도에서 최대값을 보였다.

  • PDF

Improvement of the Wear Resistance of PP using Montmorillonite

  • Kim, Jae June;Ryu, Sung Hun;Oh, Jin Young
    • Elastomers and Composites
    • /
    • v.57 no.2
    • /
    • pp.40-47
    • /
    • 2022
  • The effects of maleic-anhydride-grafted polypropylene (PP-g-MAH) and montmorillonite (MMT) on the wear resistance of polypropylene (PP) were investigated. The surface of MMT was modified with 3-aminopropyltriethoxysilane, and the interfacial interaction between PP and MMT was improved using PP-g-MAH. Fourier-transform infrared spectroscopy was used to confirm that silane was grafted on the surface of MMT. The Taber abrasion test and scanning electron microscopy were used to determine the wear resistance and observe the surface morphology of PP, respectively, after wear testing. Energy-dispersive X-ray spectroscopy was used to compare the effects of PP-g-MAH and silane modification of MMT on the dispersion of MMT. The results indicated that silane was successfully grafted onto the surface of MMT. Moreover, the wear resistance of PP was improved by the addition of MMT. The wear resistance of PP composites comprising silane-modified MMT and PP-g-MAH was higher than those of other PP composites. This was attributed to silane improving the interfacial interaction between MMT and PP.

Preparation and Characterization of Proton Conductive Phosphosilicate Membranes Based on Inorganic-Organic Hybrid Materials

  • Huang, Sheng-Jian;Lee, Hoi-Kwan;Kang, Won-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.241-247
    • /
    • 2005
  • A series of proton conductive inorganic-organic hybrid membranes doped with phosphoric acid ($H_3PO_4$) and/or triethylphosphate (PO(OEt)$_3$) have been prepared by sol-gel process with 3-glycidoxypropyltrimethoxysilane (GPTMS), 3-aminopropyltriethoxysilane (APTES) and tetraethoxysilane (TEOS) as precursors. High proton conductivity of 3.0 ${\times}$ $10^{-3}$ S/cm with composition of 50TEOS-30GPTMS-20APTES-50$H_3PO_4$ was obtained at 120 ${^{\circ}C}$ under 50% relative humidity. Thermal stability of membrane was significantly enhanced by the presence of SiO$_2$ framework up to 250 ${^{\circ}C}$. XRD revealed that the gels are amorphous. IR spectra showed a good complexation of $H_3PO_4$ in the matrix. The conductivity under 75% relative humidity was significantly improved by addition of APTES due to the increase in concentration of defected site in hybrid matrix. The effect of PO(OEt)$_3$, humidifying time, and heat-treatment were also investigated. PO(OEt)$_3$ had no improvement on conductivity and conductivity increased with humidifying time, however, decreased with heating temperature.

Quantitative Analysis of the Degree of Silanization by the Ninhydrin Method and its Application to the Immobilization of GL-7-ACA Acylase and Cellulolytic Enzyme

  • Park, Seung-Won;Kim, Yong-In;Chung, Koo-Hun;Kim, Seung-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.199-203
    • /
    • 2001
  • A simple quantitative method to measure the degree of silanization was developed, based on the reaction of ninhydrin with the silanization reagent (3-aminopropyltriethoxysilane, 3-APTES). At low concentrations (0.001-0.005%, v/v) of 3-APTES, a good linearity was obtained when 3-APTES reacted with undiluted ninhydrin for 30 min. On the other hand, at high levels of 3-APTES, a linearity was obtained when 3-APTES reacted with 3-fold diluted ninhydrin for 20 min. The reliability of regression curves mentioned above was expressed as a regression coefficient ($R^2$) of more than 0.99. Immobilization of different enzymes was introduced via silanization by using the 3-APTES in order to confirm the validity of the ninhydrin method. When yield for each step in the immobilizatio process were compared, yields of both glutaraldehyde and protein were founc to have the same tendency to silanization. These results shw that the ninhydrin method was suitable for quatitative analysis of silanization and that yields of immobilization could be pre-estimated by measuring silanization levels using the ninhydrin method.

  • PDF

Multinuclear Solid-state NMR Investigation of Nanoporous Silica Prepared by Sol-gel Polymerization Using Sodium Silicate

  • Kim, Sun-Ha;Han, Oc-Hee;Kim, Jong-Kil;Lee, Kwang-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3644-3649
    • /
    • 2011
  • Multinuclear solid-state nuclear magnetic resonance (NMR) experiments were performed to investigate the local structure changes of nanoporous silica during hydrothermal treatment and surface modification with 3-aminopropyltriethoxysilane (3-APTES). The nanoporous silica was prepared by sol-gel polymerization using inexpensive sodium silicate as a silica precursor. Using $^1H$ magic angle spinning (MAS) NMR spectra, the hydroxyl groups, which play an important role in surface reactions, were probed. Various silicon sites such as $Q^2$, $Q^3$, $Q^4$, $T^2$, and $T^3$ were identified with $^{29}Si$ cross polarization (CP) MAS NMR spectra and quantified with $^{29}Si$ MAS NMR spectra. The results indicated that about 25% of the silica surface was modified. $^1H$ and $^{29}Si$ NMR data proved that the hydrothermal treatment induced dehydration and dehyroxylation. The $^{13}C$ CP MAS and $^1H$ MAS NMR spectra of 3-APTES attached on the surface of nanoporous silica revealed that the amines of the 3-aminopropyl groups were in the chemical state of ${NH_3}^+$ rather than $NH_2$.

DNA 템플릿을 활용한 전이금속 칼코겐화합물 트랜지스터 기반 바이오센서 연구

  • O, Ae-Ri;Gang, Dong-Ho;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.213.1-213.1
    • /
    • 2015
  • Field effect transistors (FETs)를 기반으로 한 바이오센서는 빠른 응답속도, 저비용, label-free 등을 이유로 각광받고 있다. 그러나 3D 구조를 기반으로 한 FETs 바이오센서의 낮은 sensitivity의 한계점을 지니며, 이를 극복하기 위해 1D 구조의 나노튜브 등을 활용하였으나 여전히 높은 sensitivity의 확보는 힘들다. 최근에는 이러한 문제점을 극복하기 위해 이차원 반도체 물질 중 하나인 Transition metal dichalcogenide (TMD)를 이용하여, 700 이상의 sensitivity를 지니는 pH센서 및 100 이상의 sensitivity를 지니는 바이오센서가 보고되었다. 하지만 이보다 더 높은 정확성 및 반응성을 높이기 위한 연구는 부족한 실정이다. 우리는 DNA 템플릿을 이용하여, TMD FET 기반 pH 및 바이오센서의 반응성을 극대화시키는 연구를 선보인다. DNA는 7~8정도의 유전상수 (K)를 가지는 물질로 기존 $SiO_2$(K=3.9)보다 높은 유전상수를 가지며 두께를 0.7 nm로 매우 얇게 형성할 수 있는 장점이 있다. 이는 FET 기반 바이오센서의 표면 캐패시턴스를 높여 sensitivity를 극대화할 수 있으며, 기존에 사용된 high-k 기반 바이오센서와 비교하여도 약 10배 이상의 sensitivity 향상을 노릴 수 있다. 또한, TMD 물질로 우리는 $WSe_2$를 선택하였으며, pH 용액의 receptor로써 우리는 3-Aminopropyltriethoxysilane (APTES)를 활용하였고, 템플릿으로 사용된 DNA는 DX tile 및 Ring type의 두 가지를 사용하였다. 추가로, DNA의 phosphate backbone을 중성화시키고 DNA의 base pairing의 charge 안정화를 위해 구리 이온($Cu^{2+}$) 및 란타넘족($Tb^{3+}$)을 추가하였다. 완성된 바이오센서의 pH 센싱을 위해 우리는 pH 6,7,8의 표준 용액을 사용하였으며, 재현성 및 반복성의 확인하였다.

  • PDF

Effect of Kaolinite Treated with Silane Coupling Agent on the Reinforcement of SBR (SBR에 대한 Silane Coupling Agent 처리한 Kaolinite의 보강효과에 관한 연구)

  • Kim, Ki-Joo;Kim, Jong-Seok;Ahn, Byung-Kook;Choi, Hyoung-Jin;Chang, Young-Jae
    • Elastomers and Composites
    • /
    • v.25 no.4
    • /
    • pp.280-290
    • /
    • 1990
  • The effect of surface treatment of kaolinite with silane coupling agent on the reinforcement of SBR was investigated. The possibility of the practical use of kaolinite as an organic filler was also scrutinized and it was found that the reinforcement of SBR was improved by modifying surface of the cheap inactive inorganic filler with organic silane coupling agents. 3-Chloropropyltrimethoxysilane(C-series), 3-mercaptopropyltrimethoxysilane(M-series) and 3-aminopropyltriethoxysilane(A-series) were used as coupling agents. To test the material properties of vulcanized and unvulcanized SBR, Mooney viscosity, modulus, elongation and fractured surface measurements by SEM were carried out by changing the amount of silane coupling agents. Torqe of the unvulcanized SBR following the measurement of the degree of vulcanization was to be increased as the amount of silane was increasing, and Mooney viscosity of M-series and A-series was also increased.

  • PDF

Preparation and Characterization of ACF Using Lyocell Adopting Surface Modification Process (리오셀 표면개질공정을 도입한 ACF 제조 및 특성)

  • Jo, Young Hyuk;Jin, Young Min;Lee, Soon Hong
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.66-73
    • /
    • 2016
  • Lyocell fibers were used as a precursor in order to improve yield and strength of cellulose-based precursor while manufacturing activated carbon fiber(ACF). Lyocell fibers as a precursor for the preparation of ACF were surface-modified by reaction with 3-aminopropyltriethoxysilane(APTES) and pre-treated with KOH and H3PO4. Using aforementioned precursor, ACFs were prepared by a series of stabilization, carbonization and activation process at high temperatures. On each process, FT-IR, TGA, UTM and SEM were used to observe fibers' physical properties including structure and porous surfaces. FT-IR results proved that surface modification was achieved during stabilization, carbonization and activation process. TGA results during carbonization process found that surface modified fibers with APTES 0.02 mol(A2) showed higher thermostability, and extended pre-treatment increased yield. Especially, yield was found to have an increase of 10~20 wt% with surface modification during activation process. UTM results showed that tensile strength has the same order of concentration of APTES after surface modification, however, was found to show lower tensile strength than lyocell fibers after stabilization process. SEM results revealed that more homogeneous porosity control could be proceed after modifying the surface for the effective removal of hazardous substances.