• Title/Summary/Keyword: 3 dimensional image

Search Result 1,898, Processing Time 0.033 seconds

Visualization of three-dimensional data with virtual reality (가상현실을 이용한 3차원 데이터 시각화)

  • Lee, Jae Eun;Ahn, Sojin;Jang, Dae-Heung
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.3
    • /
    • pp.345-362
    • /
    • 2017
  • Various data visualization methods are utilized to analyze a huge amount of data. Among various methods, a three-dimensional image requires the rotation of the image to show a stereo image on a two-dimensional screen. This study discusses two methods of batch method and real-time method, which make it possible to construct of stereo images to improve the restriction of the three-dimensional image display with virtual reality. This investigation can be useful to better explore a three-dimensional data structure.

Multi-view Display with Hologram Screen using Three-dimensional Bragg Diffraction

  • Okamoto, Masaaki;Shimizu, Eiji
    • Journal of Information Display
    • /
    • v.3 no.3
    • /
    • pp.1-11
    • /
    • 2002
  • Multi-view function is important to three-dimensional displays without dedicated glasses. It is the reason that the observers earnestly desire to change their positions freely. Multi-viewing is also principal to the reality of three-dimensional (3D) image displayed on the screen. The display of projection type has the advantage that the number of viewing points can be easily increased according to the number of projectors. The authors research on multi-view projection display with hologram screen. Powerful directionality of the diffracted beam from hologram screen is required unlike two-dimensional (2D) display. We developed a new method that all diffracted beams satisfied the same Bragg condition and became sufficiently bright to observe the 3D image under usual indoor light. The principle is based on the essential Bragg diffraction in the three-dimensional space. Owing to such three-dimensional Bragg diffraction we achieved an excellent hologram screen that could be multiple reconstructed in spite of single recording. This hologram screen is able to answer arbitrary numbers of viewing points within wide viewing zone. The distortion of 3D image becomes also sufficiently small with the method of dividing the cross angle between illumination and diffraction beam.

Correction of Image Distortion and Coordinate Calibration of the x-ray three dimensional imaging system (X선 3차원 영상 시스템에서의 영상 왜곡 및 영상 좌표계 보정)

  • 노영준;김재완;조형석;전형조;김형철;주효남
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.413-413
    • /
    • 2000
  • In this paper, we propose a series of calibrations f3r the x-ray three dimensional imaging system. In the developed x-ray system, a three dimensional inner and outer shape of an object can be reconstructed out of two dimensional transmitted x-ray image set, which are acquired by projecting x-ray to the object from different views. To achieve this, a reconstruction algorithm which estimates and updates the three dimensional volume from x-ray images is developed. The algorithm is named as uniform and simultaneous algebraic reconstruction technique(USART) which is an iterative method estimating a 3D volume based on its projected images. In this method, it is assumed that the imaging conditions that are the relative positions between the x-ray sources, object and the image planes are blown. Practically it is not easy to know the three dimensional coordinate of the components of the system, since the x-ray is not visible and the image distortions are present due to the optical components in the system. In this paper, methods of correcting image distortions are present firstly. Then the coordinates of the x-ray systems are calibrated from the x-ray images of the grid pattern. Some experimental results on these calibrations are present and discussed.

  • PDF

Influence of slice thickness of computed tomography and type of rapid protyping on the accuracy of 3-dimensional medical model (CT절편두께와 RP방식이 3차원 의학모델 정확도에 미치는 영향에 대한 연구)

  • Um Ki-Doo;Lee Byung-Do
    • Imaging Science in Dentistry
    • /
    • v.34 no.1
    • /
    • pp.13-18
    • /
    • 2004
  • Purpose : This study was to evaluate the influence of slice thickness of computed tomography (CT) and rapid protyping (RP) type on the accuracy of 3-dimensional medical model. Materials and Methods: Transaxial CT data of human dry skull were taken from multi-detector spiral CT. Slice thickness were 1, 2, 3 and 4 mm respectively. Three-dimensional image model reconstruction using 3-D visualization medical software (V-works /sup TM/ 3.0) and RP model fabrications were followed. 2-RP models were 3D printing (Z402, Z Corp., Burlington, USA) and Stereolithographic Apparatus model. Linear measurements of anatomical landmarks on dry skull, 3-D image model, and 2-RP models were done and compared according to slice thickness and RP model type. Results: There were relative error percentage in absolute value of 0.97, 1.98,3.83 between linear measurements of dry skull and image models of 1, 2, 3 mm slice thickness respectively. There was relative error percentage in absolute value of 0.79 between linear measurements of dry skull and SLA model. There was relative error difference in absolute value of 2.52 between linear measurements of dry skull and 3D printing model. Conclusion: These results indicated that 3-dimensional image model of thin slice thickness and stereolithographic RP model showed relative high accuracy.

  • PDF

Reflection-type Three-dimensional Screen using Retroreflector

  • Song, Byoungsub;Choi, Sungwon;Sung, Hyunsik;Min, Sung-Wook
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.225-229
    • /
    • 2014
  • A reflection-type three-dimensional (3D) screen using retroreflector is proposed to improve the visibility of a projected 3D image while keeping its perspective. For the projection-type 2D display, the diffuser is used to represent the 2D scene, overcoming the limitation of the aperture of the projection lens set. If the diffuser is adopted for the projected 3D image, only 2D images sectioned and blurred should be displayed on the screen. The proposed screen can make the 3D image with the aperture limitation visible to be applied to the 3D image projection systems. The feasibility of the proposed screen is verified by experiments.

Application of Simulated Three Dimensional CT Image in Orthognathic Surgery (악교정 수술에서 모의 조종된 3차원 전산화 단층촬영상의 응용)

  • Kim Hyung-Don;Yoo Sun-Kook;Lee Kyoung-Sang;Park Chang-Seo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.28 no.2
    • /
    • pp.363-385
    • /
    • 1998
  • In orthodontics and orthognathic surgery. cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery. too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipments and because of its expenses and amount of exposure to radiation. limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram. pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms. and for validation of new method. in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery. computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of dry skull that position of mandible was displaced. range of displacement between computer-simulated three dimensional images and actual postoperative three dimensional images in co-ordinates values was from -1.8 mm to 1.8 mm and 94% in displacement of all co-ordinates values was from -1.0 mm to 1.0 mm and no significant difference between computer-simulated three dimensional images and actual postoperative three dimensional images was noticed(p>0.05). 2. In four cases of orthognathic surgery patients, range of displacement between computer­simulated three dimensional images and actual postoperative three dimensional images in coordinates values was from -6.7 mm to 7.7 mm and 90% in displacement of all co-ordinates values was from -4.0 to 4.0 mm and no significant difference between computer-simulated three dimensional images and actual postoperative three dimensional images was noticed(p>0.05). Conclusively. computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms. Therefore. potentiality that can construct postoperative three dimensional image without three dimensional computed tomography after surgery was presented.

  • PDF

Three-dimensional image processing using integral imaging method (집적 영상법을 이용한 3차원 영상 정보 처리)

  • Min, Seong-Uk
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2005.07a
    • /
    • pp.150-151
    • /
    • 2005
  • Integral imaging is one of the three-dimensional(3D) display methods, which is an autostereoscopic method. The integral imaging system can provide volumetric 3D image which has both vertical and horizontal parallaxes. The elemental image which is obtained in the pickup process by lens array has the 3D information of the object and can be used for the depth perception and the 3D correlation. Moreover, the elemental image which represents a cyber-space can be generated by computer process.

  • PDF

Comparison of personal computer with CT workstation in the evaluation of 3-dimensional CT image of the skull (전산화단층촬영 단말장치와 개인용 컴퓨터에서 재구성한 두부 3차원 전산화단층영상의 비교)

  • Kang Bok-Hee;Kim Kee-Deog;Park Chang-Seo
    • Imaging Science in Dentistry
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • Purpose : To evaluate the usefulness of the reconstructed 3-dimensional image on the personal computer in comparison with that of the CT workstation by quantitative comparison and analysis. Materials and Methods : The spiral CT data obtained from 27 persons were transferred from the CT workstation to a personal computer, and they were reconstructed as 3-dimensional image on the personal computer using V-works 2.0/sup TM/. One observer obtained the 14 measurements on the reconstructed 3-dimensional image on both the CT workstation and the personal computer. Paired Nest was used to evaluate the intraobserver difference and the mean value of the each measurement on the CT workstation and the personal computer. Pearson correlation analysis and % incongruence were also performed. Results: I-Gn, N-Gn, N-A, N-Ns, B-A, and G-Op did not show any statistically significant difference (p>0.05), B-O, B-N, Eu-Eu, Zy-Zy, Biw, D-D, Orbrd R, and L had statistically significant difference (p<0.05), but the mean values of the differences of all measurements were below 2 mm, except for D-D. The value of correlation coefficient y was greater than 0.95 at I-Gn, N-Gn, N-A, N-Ns, B-A, B-N, G-Op, Eu-Eu, Zy-Zy, and Biw, and it was 0.75 at B-O, 0.78 at D-D, and 0.82 at both Orbrd Rand L. The % incongruence was below 4% at I-Gn, N-Gn, N-A, N-Ns, B-A, B-N, G-Op, Eu-Eu, Zy-Zy, and Biw, and 7.18%, 10.78%, 4.97%, 5.89% at B-O, D-D, Orbrd Rand L respectively. Conclusion : It can be considered that the utilization of the personal computer has great usefulness in reconstruction of the 3-dimensional image when it comes to the economics, accessibility and convenience, except for thin bones and the landmarks which are difficult to be located.

  • PDF

Recent Developments in Imaging Systems and Processings-3 Dimensional Computerized Tomography (영상 System의 처리의 근황-전산화 3차원 단층 영상처리)

  • 조장희
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.15 no.6
    • /
    • pp.8-22
    • /
    • 1978
  • Recently developed Computed Topography (CT) reconstruction algorithms are reviewed in a more generalized sense and a few reconstruction examples are given for illustration. The construction of an image function from the physically measured projections of some object is Discussed with reference to the least squares optimum filters, originally derived to enhance the signal-to-noise ratio in communications theory. The computerifed image processing associated with topography is generalized so as to include 3 distinct parts: the construction of an image from the projection, the restoration of a blurred, noisy image, degraded by a known space-invariant impulse response, and the further enhancement of the image, e.g. by edge sharpening. In conjunction with given versions of the popular convolution algorithm, n6t 19 be confused with filtering by a 2-diminsional convolution, we consider the conditions under which a concurrent construction, restoration, and enhancement are possible. Extensive bibliographical limits are given in the references.

  • PDF

Analysis of the Motion Picture Quality of Stereoscopic Three-dimensional Images

  • Choi, Hee-Jin;Jung, Jae-Hyun;Kim, Hwi;Lee, Byoung-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.383-387
    • /
    • 2010
  • The stereoscopic three-dimensional (3D) display provides a 3D image by inducing binocular disparity for the observers who wear special glasses. With the rapid progress in flat panel display technologies, the stereoscopic 3D display is becoming a new benefit-model of the current display industry, and several kinds of commercial stereoscopic 3D products have been released and are attracting people. Nowadays, the motion picture quality of the 3D image becomes as important as resolution or luminance since most of the commercial 3D products are 3D televisions or 3D monitors which are required to display a clear motion 3D image. In this paper, an analysis and simulation of the motion picture quality of stereoscopic 3D image is proposed, and a comparison of the motion picture performance among the current stereoscopic 3D technologies is also provided.