• Title/Summary/Keyword: 3 degree of freedom

Search Result 650, Processing Time 0.027 seconds

A Study on Dynamic Modeling and Path Tracking Algorithms of Wheeled Mobile Robot using Inertial Measurement Units (구륜 이동 로보트의 동적 모델링과 관성측정장치를 이용한 경로추적 알고리즘에 관한 연구)

  • Kim, Ki-Yeoul;Im, Ho;Park, Chong-Kug
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.10
    • /
    • pp.64-76
    • /
    • 1998
  • In this paper, we propose the dynamic modeling, path planning and tracking algorithms of 4-wheeled 2-d.o.f.(degree of freedom) mobile robot(WMR). The gaussian functions are applied to design the smooth path of WMR. To calculate the WMR position in real time, we use three components of inertial measurement units(IMU). These units have initial error because of the rotation rate of earth, gravity acceleration and so on. Therefore we derive the initial error model of IMU, and compare the fitness diagnosis about probability characteristics of real data adn estimated data. The performance of IMU with error model and Kalman filter is compared to that without filter and error model. The simulation results show that the proposed dynamic model, path planning and tracking algorithms are more useful than the conventional control algorithm.

  • PDF

Conceptual Design Trade Offs between Solid and Liquid Propulsion for Optimal Stage Configuration of Satellite Launch Vehicle

  • Qasim, Zeeshan;Dong, Yunfeng
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.283-292
    • /
    • 2008
  • The foremost criterion in the design of a Satellite Launch Vehicle(SLV) is its performance capability to boost the designated payload to the desired mission orbit; it starts from focusing on the SLV configuration to achieve the velocity requirements($}\Delta}V$) for the mission. In this paper we review an analytical approach which is suitable enough for preliminary conceptual design and is used previously to optimize stage configurations for Two Stage to Orbit SLV for Low Earth Orbit(LEO) Missions; we have extended this approach to Three Stage to Orbit SLV and compared different propellant options for the mission. The objective is to minimize the Gross Lift off Weight(GLOW). The primary performance figures of merit were the total inert weight of the SLV and the payload weight that the SLV could lift into LEO, given candidate propulsion systems. The optimization is achieved by configuring the $}\Delta}V$ between stages. A comparison of configurations of single-stage and multi-stage SLVs is made for different propellants. Based upon the optimized stage configurations a comparative performance analysis is made between Liquid and Solid fueled SLV. A 3 degree of freedom trajectory-analysis program is modeled in SIMULINK and used to conduct the performance analysis. Furthermore, a cost analysis is performed on our stage optimized SLVs. The cost estimation relationships(CER) used give us a comparison of development and fabrication costs for the Liquid vs. Solid fueled SLV in man years. The pros and cons of the production, operation ability, performance, responsiveness, logistics, price, shelf life, storage etc of both Solid and Liquid fueled SLVs are discussed. The statistics and data are used from existing or historical(real) SLV stages.

  • PDF

Study on 2.5D Map Building and Map Merging Method for Rescue Robot Navigation (재난 구조용 로봇의 자율주행을 위한 지도작성 및 2.5D 지도정합에 관한 연구)

  • Kim, Su Ho;Shim, Jae Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.114-130
    • /
    • 2022
  • The purpose of this study was to investigate the possibility of increasing the efficiency of disaster relief rescue operations through collaboration among multiple aerial and ground robots. The robots create 2.5D maps, which are merged into a 2.5D map. The 2.5D map can be handled by a low-specification controller of an aerial robot and is suitable for ground robot navigation. For localization of the aerial robot, a six-degree-of-freedom pose recognition method using VIO was applied. To build a 2.5D map, an image conversion technique was employed. In addition, to merge 2.5D maps, an image similarity calculation technique based on the features on a wall was used. Localization and navigation were performed using a ground robot to evaluate the reliability of the 2.5D map. As a result, it was possible to estimate the location with an average and standard error of less than 0.3 m for the place where the 2.5D map was normally built, and there were only four collisions for the obstacle with the smallest volume. Based on the 2.5D map building and map merging system for the aerial robot used in this study, it is expected that disaster response work efficiency can be improved by combining the advantages of heterogeneous robots.

Active Control of Isolation Table Using $H_\infty$ Control ($H_\infty$ 제어를 이용한 방진대의 능동제어)

  • Kim, Kyu-Young;Yang, Hyun-seok;Park, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3079-3094
    • /
    • 1996
  • Recently, the high-precision vibration attenuation technology becomes the essence fo the seccessful development of high-integrated and ultra-precision industries, and is expected to continue playing a key role in the enhancement of manufacturing technology. Vibration isolation system using an air-spring is widely employed owing to its excellent isolation characteristics in a wide frequency range. It has, however, some drawbacks such as low-stiffness and low-damping features and can be easily excited by exogenous disturbances, and then vibration of table is remained for a long time. Consequently, the need for active vibration control for an air-spring vibration isolation system becomes inevitable. Furthermore, for an air-spring isolation table to be successfully employed in a variety of manufacturing sites, it should have a guaranteed robust performance not only to exogenous disturbances but also to uncertainties due to various equipments which might be put on the table. In this study, an active vibration suppression control system using H.inf. theory is designed and experiments are performed to verify its robust performance. An air-spring vibration isolation table with voice-coil-motors as its actuators is designed and built. The table is modeled as 3 degree-of-freedom system. An active control system is designed based on $H_\infty$control theory using frequency-shaped weighting functions. Analysis on its performance and frequency responce properties are done through numerical simulations. Robust characteristics of$H_\infty$ control on disturbances and model uncertainties are experimentally verified through (i) the transient response to the impact excitation of the table, (ii) the steady-state response to the harmonic excitation, and (iii) the response to the mass change of the table itself. An LQG controller is also designed and its performance is compared with the $H_\infty$ controller.

Validation of the Dutch Eating Behaviour Questionnaire Children (DEBQ-C) version in Turkish preadolescence children

  • Duygu, Saglam;Merve, Aydemir;Gozde Aritici, Colak;Murat, Bas
    • Nutrition Research and Practice
    • /
    • v.16 no.6
    • /
    • pp.765-774
    • /
    • 2022
  • BACKGROUND/OBJECTİVES: It is important to determine Dysfunctional eating behaviors such as dietary restraint and overeating tendencies in order to provide weight management and acquire the right habits in children. The purpose of this study was to test the reliability and validity of Dutch Eating Behaviour Questionnaire Children (DEBQ-C) with Turkish preadolescent children. MATERIALS/METHODS: This research included 440 preadolescents (9.3 ± 6.9 years and 235 girls, 205 boys). The instrument is divided into three subscales, each with 20 items. Emotional eating, restrained eating, and external eating are the three subscales. Confirmatory factor analysis (CFA) was used to assess the construct validity of the Turkish version of the DEBQ-C, and Cronbach α values were computed to evaluate the subscale reliabilities. There were 20 observable variables and three latent variables in the hypothesized model. RESULTS: Fit indices for the hypothesized model were good (×2/degree of freedom = 1.96; root mean square error of approximation = 0.05; comparative fit index = 0.95; goodness of fit index = 0.93). These findings revealed that the Turkish version of the DEBQ-C has a factor structure that was identical to the three-factor structure of the original scale. The Turkish version of the DEBQ-C subscales has internal consistency coefficients ranging from 0.72 (external eating) to 0.86. (emotional eating). CONCLUSIONS: The DEBQ-C Turkish version is a viable and reliable tool for measuring overeating tendencies in Turkish preadolescents, according to the findings.

Application of MR Damper for Vibration Control of Floor Slab (바닥판 구조물의 진동제어를 위한 MR 감쇠기의 적용)

  • Kim, Gee-Cheol;Kwak, Chul-Seung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.59-67
    • /
    • 2006
  • A conventional passive TMD is only effective when it is tuned properly. In many practical applications, inevitable off-tuning of a TMD occurs because the mass in a building floor could change by moving furnishings, people gathering, etc. when TMDs are offtuned, TMDs their effectiveness is sharply reduced. Moreover, the off-tuned nTMDs can excessively amplify the vibration levels of the primary structures. This paper discusses the application of a new class of MR damper, for the reduction of floor vibrations due to machine and human movements. The STMD introduced uses a MR damper called to semi-active damper to achieve reduction in the floor vibration. Here, the STMD and the groundhook algorithm are applied to a single degree of freedom system representative of building floors. The performance or the STMD is compared to that or the equivalent passive TMD. In addition, the effects of off-tuning due to variations in the mass of the floor system. Comparison of the results demonstrates the efficiency and robustness or STMD with respect to equivalent TMD.

  • PDF

PREDICTION OF SEPARATION TRAJECTORY FOR TSTO LAUNCH VEHICLE USING DATABASE BASED ON STEADY STATE ANALYSIS (정상 해석 기반의 데이터베이스를 이용한 TST 비행체의 분리 궤도 예측)

  • Jo, J.H.;Ahn, S.J.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.86-92
    • /
    • 2014
  • In this paper, prediction of separation trajectory for Two-stage-To-Orbit space launch vehicle has been numerically simulated by using an aerodynamic database based on steady state analysis. Aerodynamic database were obtained for matrix of longitudinal and vertical positions. The steady flow simulations around the launch vehicle have been made by using a 3-D RANS flow solver based on unstructured meshes. For this purpose, a vertex-centered finite-volume method was adopted to discretize inviscid and viscous fluxes. Roe's finite difference splitting was utilized to discretize the inviscid fluxes, and the viscous fluxes were computed based on central differencing. To validate this flow solver, calculations were made for the wind-tunnel experiment model of the LGBB TSTO vehicle configuration on steady state conditions. Aerodynamic database was constructed by using flow simulations based on test matrix from the wind-tunnel experiment. ANN(Artificial Neural Network) was applied to construct interpolation function among aerodynamic variables. Separation trajectory for TSTO launch vehicle was predicted from 6-DOF equation of motion based on the interpolated function. The result of present separation trajectory calculation was compared with the trajectory using experimental database. The predicted results for the separation trajectory shows fair agreement with reference[4] solution.

A menopausal transition model based on transition theory (이행이론을 기반으로 한 폐경이행모형)

  • Kim, Jisoon;Ahn, Sukhee
    • Women's Health Nursing
    • /
    • v.28 no.3
    • /
    • pp.210-221
    • /
    • 2022
  • Purpose: The purpose of this study was to construct a hypothetical model based on Meleis and colleagues' Transition Theory and a literature review to explain women's menopausal transition, constructing a modified model considering previous studies and model fit and testing the effects between variables. Methods: With a correlational survey design, middle-aged Korean women aged 40 to 64 years who had experienced menopausal symptoms were recruited and filled out a self-administered study questionnaire. Measures included menopausal symptoms, resilience, social support, menopause management, menopause adaptation, and quality of life. The data were analyzed using SPSS 24.0 and AMOS 24.0. Results: The model fit indices were considered acceptable: 𝛘2/degree of freedom=2.93, standardized root mean residual=.07, comparative fit index=.90, and parsimonious normed fit index=.73. All eight direct-effect paths-from menopausal symptoms to support and adaptation, from support to adaptation and resilience, from resilience to adaptation and management, from management to quality of life, and from adaptation to quality of life-were significant. The explanatory power of the menopause transition model was 63.6%. Conclusion: Women who experience menopausal symptoms may be able to maintain and improve their quality of life if menopause management and menopause adaptation are successful through resilience and social support. Future research is needed to confirm whether strengthening facilitation as a nursing intervention strategy may promote healthy response patterns.

An Anti-Sway Control System Design Based on Simultaneous Optimization Design Approach (동시최적화 설계기법을 이용한 항만용 크레인의 흔들림 제어계 설계)

  • Kim, Young-Bok;Moon, Duk-Hong;Yang, Joo-Ho;Chae, Gyu-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.66-73
    • /
    • 2005
  • The sway motion control problem of a container hanging on the trolley is considered in this paper. In the container crane control problem, the main issue involves suppressing the residual swing motion of the container at the end of acceleration, during deceleration, or for an unexpected disturbance input. For this problem, in general, many trolley motion control strategies are introduced and applied. In this paper, we introduce and synthesize a swing motion control system, in which a small auxiliary mass is installed on the spreader. In this control system, the actuator reacting against the auxiliary mass applies inertial control forces to the container to reduce the swing motion in the desired manner. In many studies, the controllers used to suppress the vibration have been synthesized for the given mathematical model of plants. In many cases, the designers have not been able to utilize the degree of freedom to adjust the structural parameters for the control object. To overcome this problem, so called "Structure/Control Simultaneous Method" is used. From this, in this paper the simultaneous design method is used to achieve optimal system performance. And the experimental result shows that the proposed control strategy is useful, to the case of that the controlled system is exposed to the uncertainties and, robust to disturbances like wind.

Prosodic Boundary Effects on the V-to-V Lingual Movement in Korean

  • Cho, Tae-Hong;Yoon, Yeo-Min;Kim, Sa-Hyang
    • Phonetics and Speech Sciences
    • /
    • v.2 no.3
    • /
    • pp.101-113
    • /
    • 2010
  • The present study investigated how the kinematics of the /a/-to-/i/ tongue movement in Korean would be influenced by prosodic boundary. The /a/-to-/i/ sequence was used as 'transboundary' test materials which occurred across a prosodic boundary as in /ilnjəʃ$^h$a/ # / minsakwae/ ('일년차#민사과에' 'the first year worker' # 'dept. of civil affairs'). It also tested whether the V-to-V tongue movement would be further influenced by its syllable structure with /m/ which was placed either in the coda condition (/am#i/) or in the onset condition (/a#mi). Results of an EMA (Electromagnetic Articulagraphy) study showed that kinematical parameters such as the movement distance (displacement), the movement duration, and the movement velocity (speed) all varied as a function of the boundary strength, showing an articulatory strengthening pattern of a "larger, longer and faster" movement. Interestingly, however, the larger, longer and faster pattern associated with boundary marking in Korean has often been observed with stress (prominence) marking in English. It was proposed that language-specific prosodic systems induce different ways in which phonetics and prosody interact: Korean, as a language without lexical stress and pitch accent, has more degree of freedom to express prosodic strengthening, while languages such as English have constraints, so that some strengthening patterns are reserved for lexical stress. The V-to-V tongue movement was also found to be influenced by the intervening consonant /m/'s syllable affiliation, showing a more preboundary lengthening of the tongue movement when /m/ was part of the preboundary syllable (/am#i/). The results, together, show that the fine-grained phonetic details do not simply arise as low-level physical phenomena, but reflect higher-level linguistic structures, such as syllable and prosodic structures. It was also discussed how the boundary-induced kinematic patterns could be accounted for in terms of the task dynamic model and the theory of the prosodic gesture ($\pi$-gesture).

  • PDF