• Title/Summary/Keyword: 3 dB-Fractional Bandwidth

Search Result 51, Processing Time 0.025 seconds

Bandpass Filter Using Dual-mode Resonator with Radial Stub (래디얼 스터브를 통해 구현된 이중 모드 공진기를 이용한 대역 통과 필터)

  • Yun, Tae-Soon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.3
    • /
    • pp.74-78
    • /
    • 2011
  • In this paper, the bandpass filter for ITS system of 5.8 GHz is proposed by using the dual-mode resonator with the radial stub. As alternating the open stub with the radial stub, the size of the dual mode resonator can be reduced about 39.6% and the out-of-band characteristics of the bandpass filter using dual mode resonator can be enhanced from 19.4 dB to 29.1 dB by using the stub of $6.9{\Omega}$ i.e. realized by parallel two radial stubs with $60^{\circ}$ angle. The fabricated bnadpass filter using the dual mode resonator has the center frequency of 5.72 GHz with the fractional bandwidth of 4.1%. Also, the filter has the insertion loss and return loss of 1.79 dB and 19.4 dB, respectively.

High Temperature Superconducting Pseudo-Lumped Element Bandpass Filter

  • Choi, Young-Hwan;Kim, Hong-Teuk;Moon, Seung-Hyun;Lee, Seung-Min;Oh, Byung-Du;Min, Byoung-Chul
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.107-111
    • /
    • 1999
  • A high-temperature superconducting 1.78 GHz bandpass filter, designed for PCS applications, is presented. The structure consists of microstrip pseudo-lumped elements, which make the miniaturization of the filter possible. A 5-pole microstrip filter can be realized on 37 mm ${\times}$ 9 mm LaAlO$_3$ substrate, using double-sided high-temperature superconducting YBa$_2Cu_3O_{7-{\delta}}$ thin film. This filter shows 0.7% fractional bandwidth, 0.3 dB insertion loss, and 12 dB return loss in the passband at 60 K.

  • PDF

High Temperature Superconducting Pseudo-Lumped Element Bandpass Filter

  • Min, Byoung-Chul;Choi, Young-Hwan;Kim, Hong-Teuk;Moon, Seung-Hyun;Lee, Seung-Min;Oh, Byung-Du
    • Progress in Superconductivity
    • /
    • v.1 no.1
    • /
    • pp.42-46
    • /
    • 1999
  • A high-temperature superconducting 1.78 GHz bandpass filter, designed for PCS applications, is presented. The structure consists of microstrip pseudo-lumped elements, which enables miniaturization of the filter. A 5-pole microstrip filter could be realized on a 37 mm $\times$ 9 mm $LaAlO_3$ substrate, using double-sided high-temperature superconducting $YBa_2Cu_3O{7-\delta}$ thin film. This filter showed 0.7 % fractional bandwidth, 0.3 dB insertion loss, and 12 dB return loss in the passband at 60 K.

  • PDF

Wideband Slot Antenna with Corrugated Structure (물결모양 구조를 갖는 광대역 슬롯 안테나)

  • Kim, Taewon;Yoon, Sungjoon;Lee, Heejae;Choi, Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.14-19
    • /
    • 2016
  • In this paper, a wideband slot antenna with corrugated structure antenna is proposed. The proposed antenna consists of a ground plane with corrugated slot and microstrip feed-line. Even with a limited dimension of $70{\times}70{\times}1.6mm$, the proposed antenna has wide bandwidth due to the longer current path formed by the corrugated slot structure. Measured bandwidth(10 dB return loss) and fractional bandwidth of the proposed antenna are 2,180 MHz(2.5~4.68 GHz) and 60.7 % at the center frequency of 3.59 GHz. The proposed antenna has an omni-directional radiation pattern and measured gains and average efficiency were 3.48~5.83 and dBi, 81.55 %, respectively.

Suppression of Harmonic Passband of Bandpass Filters(BPFs) Using Parallel-Coupled Mushroom Structure (평행 결합 Mushroom 구조를 이용한 대역 통과 여파기의 고조파 성분 억제)

  • Lee, Jae-Gon;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.2 s.117
    • /
    • pp.118-125
    • /
    • 2007
  • Harmonic band of bandpass filter(BPF) is suppressed using coupled mushroom structure. Between double positive (DPS) transmission line such as microstrip and double negative(DNG) transmission line such as one dimensional mushroom structure, strong coupling broadly arises in the cross range of dispersion curves of isolated microstrip and mushroom structure because of complex propagation constant in the cross range. Strong coupling inhibits wave propagation, so that this kind of structure can be utilized as bandstop filter(BSF). This BSF utilizes coupled transmission line instead of coupled resonator, resulting in broad bandwidth(>30 %), shan-rejection, and high rejection level. The strong coupling between DPS and DNG transmissionline makes it possible shorten coupling length, resulting in compact size. In this paper, parallel coupled BSF having center frequency of 4 GHz and 3 dB fractional bandwidth of 40 % is designed and utilized to suppressed spurious mode of two bandpass filters.

Design and Fabrication of 10 GHz Substrate Integrated Waveguide Band Pass Filter Based on EM Simulation (10 GHz 대역 기판 집적 도파관 대역 통과 여파기의 EM 시뮬레이션을 이용한 설계 및 제작)

  • Lee, Won-Hee;Oh, Hyun-Seok;Jeong, Hae-Chang;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.99-109
    • /
    • 2010
  • Recently, SIW(Substrate Integrated Waveguide) is intensively studied because of its high Q and easy integration with other devices. However, lacks of analytic characterization of SIW makes it difficult an accurate design of a SIW filter along the conventional filter design method. In this paper, two kinds of a three-stage 10 GHz SIW bandpass filter of fractional bandwidth 10% are designed using 3D EM simulator HFSS based on the recently presented EM filter design method. Two types of a modified CPW to SIW transition is proposed and employed as a SIW to microstrip transition necessary for measurement. The transitions provide an easy measurement with commercial test fixture by TRL calibration. The two proposed transitions are included in the SIW filters. The fabricated filters shows the center frequency of 10 GHz, fractional bandwidth 10%, a return loss of about 12 dB, and insertion loss of about 0.8 dB.

Implementation of UltraWideband Filter using Ceramic Multilayer Configuration (세라믹 적층공정을 이용한 UWB Filter 구현에 관한 연구)

  • Yoo, Chan-Sei;Lee, Joong-Keun;Lee, Woo-Sung;Kang, Nam-Kee
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.45-46
    • /
    • 2006
  • An ultrawide bandpass filter with sharp rejection and wider stopband is designed and implemented using multilayer ceramic configuration. The proposed filter is composed of a broadside coupled structure and a ring type filter with an embedded stripline stub. The measured results show that the fractional bandwidth and upper stopband of the proposed filter are 106 % and better than -30 dB, respectively. The insertion loss is less than 1 dB, and group delay is less than 0.3 ns in the passband. In addition, ring and broadside coupled gap structures are characterized and compared to the proposed structure.

  • PDF

Transversal wideband bandpass filter with a wide stopband and multiple transmission zeros

  • Wang, Li-Tian;Xiong, Yang;Wang, Zhi-Peng;Gong, Li
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.133-140
    • /
    • 2021
  • Herein, we present a compact transversal bandpass filter (BPF) with an extremely wide upper stopband and multiple transmission zeros (TZ). Three signal transmission paths with shorted stubs and open-coupled lines allow signal transmission from input port to output port. Two resonant modes can be excited simultaneously and managed easily for bandpass response. Eleven TZs are achieved via transmission path cancelation; an extremely wide upper stopband with an attenuation level better than -12 dB is achieved up to 11.7 f0, where f0 is the center frequency (CF). In addition, bandwidth and CF can be controlled by adjusting electrical lengths. For proof of concept, a wideband BPF centered at 1.04 GHz with 3 dB fractional bandwidths of 49.2% was designed, fabricated, and evaluated. The overall circuit measures 0.045λg × 0.117λg; good agreement was observed between the measured and simulated results.

Fabrication and Design of a Compact Narrow Band Pass Filter Using Slot Type Split Spiral Resonators (슬롯형 분할 나선형 공진기를 이용한 소형 협 대역통과 필터 설계 및 제작)

  • Choi, Dong-Muk;Kim, Dang-Oh;Jo, Nam-I;Kim, Che-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.4
    • /
    • pp.38-42
    • /
    • 2010
  • In this paper, a design method of the compact narrow band filter on the microstrip board is proposed using slot-type split spiral resonators. The design technique of this filter is based on cascading filter stages consisting of the combination of slot-type split spiral resonators, capacitive gaps between patches, and inductive grounded stubs with the meander configuration. By these means, it was possible to get the nearly symmetric frequency responses, adjustable bandwidths, compact sizes. And also excellent characteristic of the out-of-band rejection is achieved in contrast to the conventional filter design technique. The measured insertion loss shows good results about -3.47dB at the center frequency($f_0$=1GHz) and passband return loss is less than -12.62dB. The 3dB fractional bandwidth(FBW) is approximately 7.3%. The results of the frequency response measured on the fabricated band pass filter substrate show satisfactory agreement with the simulated frequency responses by the MWS(Microwave Studio) of CST in the region of interest.

Design of a Ka-band Bandpass Filter Using LTCC Technology (LTCC 기술을 이용한 Ka-밴드 대역통과필터 설계)

  • 최병건;박철순
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2A
    • /
    • pp.214-217
    • /
    • 2004
  • In this paper, a Ka-band LTCC (low temperature co-fired ceramic) narrow bandpass filter (BPF) is firstly presented. This BPF shows very narrow 3dB fractional bandwidth of 4.5 % centered at 28.7㎓. The advantages of multi-layered LTCC technology such as high integration and vertical stacking capabilities were employed to design three-dimensional interdigital end-coupled embedded microstrip narrow BPF. The difficulties in controlling the precise distance between two adjacent resonators in LTCC end-coupled BPF were overcome by locating the resonators on different layers. The measured insertion loss is 3dB at 28.7㎓, pass band is from 27.9 ㎓ to 29.2 ㎓, and the return loss in the pass band is less than 10 dB.