• Title/Summary/Keyword: 3 Lens

Search Result 1,463, Processing Time 0.025 seconds

Continuous-phase Lens Design via Binary Dielectric Annular Nanoslits

  • Woongbu Na;Seung-Yeol Lee;Hyuntai Kim
    • Current Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.304-309
    • /
    • 2023
  • In this study, a binary dielectric annular nanoring lens is proposed to cover the full range of optical phase. The lens is designed numerically, based on the effective-medium theory. The performance of the proposed lens is verified for the cases of single-focal and dual-focal lenses. The efficiency of a single-focal lens is improved by 17.19% compared to a binary dielectric lens, and that of a dual-focal lens shows enhancements of 13.11% and 49.41% at the two focal points. This lens design can be applied to other optical components with axially symmetric structures.

Microbial contamination in contact lens care systems (Contact lens care system의 미생물 오염)

  • Kim, Sang-Moon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.1 no.1
    • /
    • pp.57-63
    • /
    • 1996
  • The microbial contamination in contact lens care systems and conjunctivas of 40 asymptomatic cosmetic soft contact lens wearers was investigated. Patient ages ranged from 19 to 27(mean:22), most of them have used hydrogel contact lenses for less than 1 year, and the ages of lens cases were 1 weeks ~ 3 months (43 %) or 4~6 months (52%). Twenty-seven patients (67%) chemically disinfected their lenses and 8(20 %) used hydrogen peroxide, and 5 used heat to disinfect. Fourteen patients used commercial non-preserved saline, and 26(65%) were using commercial preserved saline. Sixty-two percent of the patients had bacterial contamination of lens case, and 17% had conjunctival contamination. The bacterial contamination rate was highest in lens cases, followed by unpreserved salines, disinfecting chemicals(non-hydrogen peroxide), and conjunctivas. The fungal contamination rate of cases and conjunctivas was 67% and 15%, respectively, and lens case, unpreserved saline, and conjunctiva seemed more susceptible to contamination. The use of hydrogen peroxide for disinfection rather than chemical disinfection was associated remarkabley with decreased contamination of solution itself, and there was no significant difference in contamination rates between hydrogen peroxide care system and other disinfecting systems. Five of lens cases(13%) and 2 conjunctivas(5%) were contaminated with Pseudomonas aeruginosa, and Candida albicans were isolated from 11cases (27%) and 5 conjunctivas (12%). Of the organisms that were contaminated lens cases and conjunctivas, Pseudomonas aeruginosa, Escherichia coli, Candida albicans, and Aspergillus fumigatus were isolated from lens cases, whereas Pseudomonas aeruginosa, Candida albicans, and Aspergillus fumigatus were recorvered from conjunctivas. Fortunately all of the these tested samples showed 0% of Acanthamoeba in this investigation.

  • PDF

The Actual Management State of Trial Contact Lenses and Lens Care Products in Local Optical Shops (안경원의 시험착용 콘택트렌즈 및 관리용품 관리 실태)

  • Park, Mijung;Lee, Unjung;Kim, So Ra
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.4
    • /
    • pp.391-401
    • /
    • 2011
  • Purpose: In the present study, the actual management state of trial contact lenses and lens care products in local optical shops was surveyed and analyzed to reduce the risk of lens complication possibly induced by neglecting lens care. Methods: The feeling of contact lens wearers during the wear of trial contact lenses was surveyed. Futhermore, the actual management state of trial contact lenses such as cosmetic lens and RGP lens and lens care products was also investigated by surveying opticians who trade contact lenses in local optical shops. Results: It was found that consumers trusted the sanitary conditions of the lens since trial cosmetic contact lens and RGP lens were cleaned before and after trails by over 98% of opticians in local optical shops. For trial cosmetic lens, cleaning with normal saline, multipurpose solution for soft lens and combination of saline and multipurpose solution were 38.5%, 40.5% and 21%, respectively, before trials. After trials, cosmetic lenses were cleaned with normal saline, multipurpose solution for soft lens and a combination of saline and multipurpose solution were 13%, 75%, and 12%, respectively. On the other hand, cleaning with normal saline, multipurpose solution for RGP lens and combination of saline and multipurpose solution were 28.5%, 38.5% and 33%, respectively, before trying trial RGP lens. After trials, RGP lenses were cleaned with normal saline, multipurpose solution for RGP lens and a combination of saline and multipurpose solution were 2.5%, 70%, and 27.5%, respectively, indicating that relatively many opticians followed the lens cleaning regimen. In local optical shops, the cleaning trial cosmetic lens was mainly conducted at every 10 days or a month and the washing cycle of cosmetic lens case was in a month or 2~3 months. The cleaning interval of trial RGP lens was primarily in a month or 2~3 months. For those lens cases, more than 75% of opticians washed them with a surfactant and then rinsed with cold water. The storing periods of lens care products were primarily in a week for saline and in a month and 2~3 months indicating that storing period of lens care products was relatively well-kept in local optical shops. Conclusions: It is thought that the concern about any microbial infection is not that high since trial contact lenses and lens care products were generally well-managed by opticians in local optical shops from the results above. However, better public eye health and better public confidence in opticians may be possible if further strengthen in avoidance of lens cleaning with saline, keep of cleaning cycles within 2 weeks and rinsing of lens cases with hot water happens.

Development of 3D scanner using structured light module based on variable focus lens

  • Kim, Kyu-Ha;Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.260-268
    • /
    • 2020
  • Currently, it is usually a 3D scanner processing method as a laser method. However, the laser method has a disadvantage of slow scanning speed and poor precision. Although optical scanners are used as a method to compensate for these shortcomings, optical scanners are closely related to the distance and precision of the object, and have the disadvantage of being expensive. In this paper, 3D scanner using variable focus lens-based structured light module with improved measurement precision was designed to be high performance, low price, and usable in industrial fields. To this end, designed a telecentric optical system based on a variable focus lens and connected to the telecentric mechanism of the step motor and lens to adjust the focus of the variable lens. Designed a connection structure with optimized scalability of hardware circuits that configures a stepper motor to form a system with a built-in processor. In addition, by applying an algorithm that can simultaneously acquire high-resolution texture image and depth information and apply image synthesis technology and GPU-based high-speed structured light processing technology, it is also stable for changes to external light. We will designed and implemented for further improving high measurement precision.

Analysis of Vertex Refractive Power Accuracy of Soft Contact Lens with Holder Type (홀더종류에 따른 소프트 콘택트렌즈의 정점굴절력 측정의 정확도 분석)

  • Lee, Min-Jae;Sung, A-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.2
    • /
    • pp.105-115
    • /
    • 2015
  • Purpose: The accuracy for measuring the refractive power of hydrogel contact lenses by spectacle lens holder and contact lens holder was evaluated. The accuracy for each sample was also analyzed with water content and diopter categories. Methods: The hydrogel contact lenses used for measurement were classified into three categories in water content (38%, 43%, 58%). Also, three diopter categories of refractive power were used such as -3.000 D, -7.000 D, -10.000 D. And also, the reliability of measurement results were evaluated by measuring refractive power with spectacle lens holder and contact lens holder using an Manual lensmeter. Results: In case of spectacle lens holder method, the average value of refractive power was -3.3273D for -3.0000 D, -7.1306 D for -7.0000 D and -10.2944 D for -10.0000 D, respectively. In case of contact lens holder method, the average value of refractive power was -3.1060 D for -3.0000 D, -7.0028 D for -7.0000 D and -10.2611 D for -10.0000 D, respectively. In measurement of all diopters, the accuracy of contact lens holder method was better than spectacle lens holder method. Conclusions: From these results, it is judged that the refractive power of soft contact lens by manual lensmeter with contact lens holder have a higher accuracy than spectacle lens holder.

Design of an 8x Four-group Inner-focus Zoom System Using a Focus Tunable Lens

  • Lee, Daye;Park, Sung-Chan
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.283-290
    • /
    • 2016
  • This study presents an 8x four-group inner-focus zoom lens with one-moving group for a compact camera by use of a focus tunable lens (FTL). In the initial design stage, we obtained the powers of lens groups by paraxial design based on thin lens theory, and then set up the zoom system composed of four lens modules. Instead of numerically analytic analysis for the zoom locus, we suggest simple analysis for that using lens modules optimized. After replacing four groups with equivalent thick lens modules, the power of the fourth group, which includes a focus tunable lens, is designed to be changed to fix the image plane at all positions. From this design process, we can realize an 8x four-group zoom system having one moving group by employing a focus tunable lens. The final designed zoom lens has focal lengths of 4 mm to 32 mm and apertures of F/3.5 to F/4.5 at wide and tele positions, respectively.

Radiation Dose Reduction of Lens by Adjusting Table Height and Magnification Ratio in 3D Cerebral Angiography (삼차원 뇌혈관조영술에서 테이블 높이와 확대율 조절에 따른 수정체 선량 감소에 대한 연구)

  • Yoon, Jong-Tae;Lee, Ki-Baek
    • Journal of radiological science and technology
    • /
    • v.45 no.4
    • /
    • pp.313-320
    • /
    • 2022
  • Both angiography and interventional procedures accompanied by angiography provide many diagnostic and therapeutic benefits to patients and are rapidly increasing. However, unlike general radiography or computed tomography using the same X-ray, the amount of radiation is quite high, but the dose range can vary considerably for each patient and operator. The high sensitivity of the lens to radiation during cerebral angiography and neurointervention is already well known, and although there are many related studies, it is insufficient to easily reduce radiation in diagnosis and treatment. In this situation, in particular, by adding three-dimensional rotational angiography (3D-RA) to the existing two-dimensional (2D) angiography, it is now possible to make an accurate diagnosis. However, since this 3D-RA acquires images through projection of more radiation than before, the exposure dose of the lens may be higher. Therefore, we tried to analyze whether the radiation dose of the lens can be reduced by moving the lens out of the field range by adjusting the table height and magnification ratio during the examination using 3D-RA. The surface dose was measured using a rando phantom and a radiophotoluminescent glass dosimeter (PLD) and the radiation dose was compared by adjusting the table height and magnification ratio based on the central point. As a result, it was found that the radiation dose of the lens decreased as the table height increased from the central point, that is, as the lens was out of the field of view. In conclusion, in 3D-RA, moving the table position of about 2 cm in height will make a significant contribution to the dose reduction of the lens, and it was confirmed that adjusting the magnification ratio can also reduce the surface dose of the lens.

A study on the thermal deformation of 3 cavity GMP mold for glass lens (GMP 공정용 3 cavity 유리 렌즈 금형의 열변형에 관한 연구)

  • Chang, Sung-Ho;Heo, Young-Moo;Shin, Gwang-Ho;Jung, Tae-Sung
    • Design & Manufacturing
    • /
    • v.2 no.6
    • /
    • pp.38-42
    • /
    • 2008
  • Recently, the demands of digital camera and miniature camera module for mobile-phone is increased significantly. Lenses which is the core component of optical products are made by the injection molding(plastic lens) or GMP(glass lens). Plastic lens is not enough to improve the resolution and performance of optic parts. Therefore, the requirement of glass lens is increased because it is possible to ensure the high performance and resolution. In this paper, the thermal stress analysis of 3 cavity GMP mold for molding glass lens was performed for estimating the thermal stress and amount of deformation. Finally, the modification plan based on the analysis results was deducted.

  • PDF

PROTOTYPE OF HIGH RESOLUTION 3D DISPLAY USING TWO LENS ARRAYS AND DEPTH SAMPLING

  • Takeichi, Akira;Yendo, Tomohiro;Tanimoto, Masayuki;Fujii, Toshiaki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.557-561
    • /
    • 2009
  • This paper presents a prototype of high resolution 3D display with a new principle. We have proposed a new 3D display which has the features of both Integral Imaging (II) and volumetric display. The proposed display consists of two lens arrays and a thin volumetric display. When the viewer watches a thin volumetric display through two lens array, he can perceive a thick 3D image. In other words the two lens arrays can play a role of a convex lens which has a large diameter as a amplification of a depth. The advantage of the proposed display is that it has higher resolution than II and it is smaller than volumetric display with a large convex lens. In this paper, we show a detail of a prototype 3D display. We took various errors into consideration when we simulated 3D display and we found suitable lenses parameter from the simulation result. Then we confirm that the prototype will be able to reconstruct 3D images.

  • PDF

Ultra-Compact Zoom Lens Design for Phone Camera Using Hybrid Lens System (복합렌즈계를 이용한 폰 카메라용 초소형 줌렌즈 설계)

  • Park, Sung-Chan;You, Byoung-Taek
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.5
    • /
    • pp.349-359
    • /
    • 2008
  • For an inner-focusing 3-groups zoom lens system, this study suggests a new initial design method which applies the process that changes thin lenses into thick ones effectively and quickly, using the hybrid lens system(thin lens+thick lens). In other words, the hybrid lens system is the semi-automatic design process that makes the thin lens of one group change into a thick one while the other groups are composed of thin lenses. Keeping the total power of the system fixed, the power of each group and the distance between principal planes can be fixed. Of course, the other groups composed of thin lenses could be changed into thick lenses sequentially by this process. This design conception results in the 1/4" 5 M inner-focusing 3-groups 2x zoom lens system satisfying the specifications and performances of zoom lens for phone cameras. Also aspherization on lens elements of glass and plastic material enhanced the resolution and reduced the lens size. As a result, we have an ultra-compact inner-focusing 3-groups 2x zoom lens system for a phone camera, with a slim size with TTL of 9.8 mm.