• Title/Summary/Keyword: 3 Dimensional Geometry

Search Result 594, Processing Time 0.022 seconds

Examining Three-Dimensional Flow Characteristics in the Distribution Channel to the Flocculation Basin using CFD (전산유체역학을 이용한 응집지 분배수로의 흐름 해석에 관한 연구)

  • Park, No-Suk;Beak, Heung-Ki;Kim, Jeong-Hyun;Min, Jin-Hui;Shin, Hang-Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.500-507
    • /
    • 2004
  • This study was conducted to evaluate the equity of the flow distribution from rapid mixing basin to the flocculation basins. Also, several types of inlet structures of the open channel affecting the flow pattern and distribution trend were studied using Computational Fluid Dynamics (CFD) simulation. For investigating the factual phenomena in distribution channel, we selected a certain domestic water treatment plant with capacity of $361,000m^3/d$. From the measurements of flow discharge, it is investigated that this existing inlet geometry resulted in significant inequitable distribution. The both largest deviations in the basins and rows were over 10%. In order to reduce the these deviation, this study suggested installing a baffle against the influent, and showed the effectiveness which the largest deviation was less than 3%. Also, it was concluded that the existing design method of open channel could be improved by three-dimensional hydrodynamic analysis for optimizing the even flow.

Optimal Wave Source Position Determination Based on Wave Propagation Simulation (전자파 영향 평가를 통한 최적의 전파 기지국 위치 결정 방법)

  • 박성헌;박지헌
    • Korean Management Science Review
    • /
    • v.18 no.1
    • /
    • pp.41-54
    • /
    • 2001
  • In this paper, we proposed a method to determine optimal wave source for mobile telephone communication. The approach is based on wave propagation simulation. Given a wave source we can determine wave propagation effects on every surfaces of wave simulation environment. The effect is evaluated as a cost function while the source’s position x, y, z work as variables for a parameter optimization. Wave propagated 3 dimensional space generates reflected waves whenever it hits boundary surface, it receives multiple waves which are reflected from various boundary surfacers in space. Three algorithms being implemented in this paper are based on a raytracing theory. If we get 3 dimensional geometry input as well as wave sources, we can compute wave propagation effects all over the boundary surfaces. In this paper, we present a new approach to compute wave propagation. First approach is tracing wave from a source. Source is modeled as a sphere casting vectors into various directions. This approach has limit in computing necessary wave propagation effects on all terrain surfaces. The second approach proposed is tracing wave backwards : tracing from a wave receiver to a wave source. For this approach we need to allocate a wave receiver on every terrain surfaces modeled, which requires enormous amount of computing time. But the second approach is useful for indoor wave propagation simulation. The last approach proposed in this paper is tracing sound by geometric computation. We allow direct, 1-relfe tion, and 2-reflection propagation. This approach allow us to save in computation time while achieving reasonable results. but due to the reflection limitaion, this approach works best in outdoor environment.

  • PDF

Thermal Dispersion Analysis Using Semi-Active Particle Tracking in Near Field Combined with Two-Dimensional Eulerian-Lagrangian Far Field Model (근역에서 부력입자추적모형을 적용한 Eulerian-Lagrangian 결합에 의한 온수확산)

    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.2
    • /
    • pp.73-82
    • /
    • 1998
  • In order to simulate surface discharged heat dispersion in costal area, a 2-dimensional Eulerian-Lagrangian model for far field and semi-active particle tracking random walk model in near field has been combined. The mass of discharged heat water in near field has treated as particles with buoyancy and this is eventually converted to horizontal additive dispersion in random walk equations. This model is applied to both a simplified coastal geometry and a real site. In simple application it can simulate plume-like characteristics around discharging point than a near field-model, CORMIX/3. Actual application in the Chonsu Bay shows farther spreading of heat water in near field comparing the observed data, and this shows that the developed model might be applied with satisfaction.

  • PDF

Recognition of Gap between base Plates for Automated Welding of Thick Plates (후판 자동용접을 위한 용접물의 갭 측정)

  • Yi, Hwa-Cho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.37-45
    • /
    • 1999
  • Many automated welding equipment are used in the industry. However, there are some problems to get quality welds because of the geometric error, thermal distortion, and incorrect joint fit-up. These factors can make the gap between base plates in case of a thick plate welding. The welding product with the quality welds can not be obtained without consideration of the gap. In this paper, the robot path and welding conditions are modified to get the quality weld by detecting the position and size of the gap. In this work, a low-priced laser range sensor is used. The 3-dimensional information is obtained using the motion of a robot, which holds a laser range sensor. The position and size of the gap is calculated using signal processing of the measured 3-dimensional information of joint profile geometry. The data measured by a laser range sensor is segmented by an iterative end point method. The segmented data is optimized by the least square method. The existence of gap is detected by comparing the data with the segmented shape of template. The effects of robot measuring speed and gap size are also tested. The recognizability fo the gap is verified as good by comparing the real joint profile and the calculated joint profile using the signal processing.

  • PDF

Static Aeroelastic Response of Wing-Structures Accounting for In-Plane Cross-Section Deformation

  • Varello, Alberto;Lamberti, Alessandro;Carrera, Erasmo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.310-323
    • /
    • 2013
  • In this paper, the aeroelastic static response of flexible wings with arbitrary cross-section geometry via a coupled CUF-XFLR5 approach is presented. Refined structural one-dimensional (1D) models, with a variable order of expansion for the displacement field, are developed on the basis of the Carrera Unified Formulation (CUF), taking into account cross-sectional deformability. A three-dimensional (3D) Panel Method is employed for the aerodynamic analysis, providing more accuracy with respect to the Vortex Lattice Method (VLM). A straight wing with an airfoil cross-section is modeled as a clamped beam, by means of the finite element method (FEM). Numerical results present the variation of wing aerodynamic parameters, and the equilibrium aeroelastic response is evaluated in terms of displacements and in-plane cross-section deformation. Aeroelastic coupled analyses are based on an iterative procedure, as well as a linear coupling approach for different free stream velocities. A convergent trend of displacements and aerodynamic coefficients is achieved as the structural model accuracy increases. Comparisons with 3D finite element solutions prove that an accurate description of the in-plane cross-section deformation is provided by the proposed 1D CUF model, through a significant reduction in computational cost.

Direct Finite Element Model Generation using 3 Dimensional Scan Data (3D SCAN DATA 를 이용한 직접유한요소모델 생성)

  • Lee Su-Young;Kim Sung-Jin;Jeong Jae-Young;Park Jong-Sik;Lee Seong-Beom
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.143-148
    • /
    • 2006
  • It is still very difficult to generate a geometry model and finite element model, which has complex and many free surface, even though 3D CAD solutions are applied. Furthermore, in the medical field, which is a big growth area of recent years, there is no drawing. For these reasons, making a geometry model, which is used in finite element analysis, is very difficult. To resolve these problems and satisfy the requests of the need to create a 3D digital file for an object where none had existed before, new technologies are appeared recently. Among the recent technologies, there is a growing interest in the availability of fast, affordable optical range laser scanning. The development of 3D laser scan technology to obtain 3D point cloud data, made it possible to generate 3D model of complex object. To generate CAD and finite element model using point cloud data from 3D scanning, surface reconstruction applications have widely used. In the early stage, these applications have many difficulties, such as data handling, model creation time and so on. Recently developed point-based surface generation applications partly resolve these difficulties. However there are still many problems. In case of large and complex object scanning, generation of CAD and finite element model has a significant amount of working time and effort. Hence, we concerned developing a good direct finite element model generation method using point cloud's location coordinate value to save working time and obtain accurate finite element model.

Estimation of the Superelevation Safety Factor Considering Operating Speed at 3-Dimensional Alignment (입체선형의 주행속도를 고려한 편경사 안전율 산정에 관한 연구)

  • Park, Tae-Hoon;Kim, Joong-Hyo;Park, Je-Jin;Park, Ju-Won;Ha, Tae-Jun
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.159-163
    • /
    • 2005
  • The propriety between suppliers and demanders in geometric design is very important. Although the final purpose of constructing roads is to concern about the driver s comfort, unfortunately, it has not been considered so far. We've considered the regularity and quickness in considering driver's comfort but there should be considered the safety for the accident as well. If drivers are appeared to be more speeding than designer's intention, there will be needed some supplements to increase the safety rate for the roads. Even if both an upward and downward section are supposed to exist at the same time for solid geometry of the roads like this, it is true that the recent design for the 3-D solid geometry section has been done as flat 2-D and the minimum plane curve radius and the maximum cant have been decided just by calculating without considering operating speed between an upward and downward section at the same point. In this investigation, thus, I'd like to calculate the safety of the cant by considering the speed features of the solid geometry for the first lane of four lane rural roads. To begin with, we investigated the driving speed of the car, which is not been influenced by a preceding car to analyze the influence of the geometrical structure by using Nc-97. Secondly, we statistically analyzed the driving features of the solid geometry after comparing the 6 sections, that is, measuring the driving speed feature at 12 points and combining the influence of the vertical geometry and plane geometry to the driving speed of the plane curve which was researched before. Finally, we estimated the value of cant which considers the driving speed not by using it which has applied uniformly without considering it properly, though there were some differences between a designed speed and driving speed through the result of the basic statistical analysis but by introducing the new safety rate rule, a notion of ${\alpha}$. As a result of the research, we could see the driving features of the car and suggest the safety rate which considers these. For considering the maximum cant, if we apply the safety rate, the result of this experiment, which considers 3-D solid geometry, there'll be the improvement of the driver's safety for designing roads. In addition, after collecting and analyzing the data for the road sections which have various geometrical structures by expanding this experiment it is considered that there should be developed the models which considers 3-D solid geometry.

The Properties of Beam Intensity Scanner(BInS) in IMRT with Phantom for Three Dimensional Dose Verification

  • Young W. Vahc;Park, Kwangyl;Byung Y. Yi;Park, Kyung R.;Lee, Jong Y.;Ohyun Kwon;Park, Kwangyl;Kim, Keun M.
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.64-64
    • /
    • 2003
  • Objectives: Patient dose verification is clinically the most important parts in the treatment delivery of radiation therapy. The three dimensional(3D) reconstruction of dose distribution delivered to target volume helps to verify patient dose and determine the physical characteristics of beams used in intensity modulated radiation therapy(IMRT). We present Beam Intensity Scanner(BInS) system for the pre treatment dosimetric verification of two dimensional photon intensity. The BInS is a radiation detector with a custom made software for relative dose conversion of fluorescence signals from scintillator. Methods: This scintillator is fabricated by phosphor Gadolinium Oxysulphide and is used to produce fluorescence from the irradiation of 6MV photons on a Varian Clinac 21EX. The digitized fluoroscopic signals obtained by digital video camera will be processed by our custom made software to reproduce 3D relative dose distribution. For the intensity modulated beam(IMB), the BInS calculates absorbed dose in absolute beam fluence, which are used for the patient dose distribution. Results: Using BInS, we performed various measurements related to IMRT and found the followings: (1) The 3D dose profiles of the IMBs measured by the BInS demonstrate good agreement with radiographic film, pin type ionization chamber and Monte Carlo simulation. (2) The delivered beam intensity is altered by the mechanical and dosimetric properties of the collimating of dynamic and/or static MLC system. This is mostly due to leaf transmission, leaf penumbra, scattered photons from the round edges of leaves, and geometry of leaf. (3) The delivered dose depends on the operational detail of how to make multileaf opening. Conclusions: These phenomena result in a fluence distribution that can be substantially different from the initial and calculative intensity modulation and therefore, should be taken into account by the treatment planing for accurate dose calculations delivered to the target volume in IMRT.

  • PDF

Error Analysis of GNSS Attitude Determination System (GNSS 자세결정시스템의 오차해석)

  • Hwang Dong-Hwan;Lee Sang-Jeong;Park Chan-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.300-306
    • /
    • 2006
  • In this paper an error analysis of 3-dimensional GNSS attitude determination system is given. The attitude error covariance matrix is derived and analyzed. It implies that attitude errors are affected by the baseline length and configuration, the satellites numbers and geometry, receiver measurement noises and the nominal attitude of the vehicle. By defining Euler Angle Dilution Of Precision (EADOP) which is analogous to GDOP, roll, pitch and yaw errors can be efficiently analyzed. However the expression of the attitude error is too complex to get some intuitions. Therefore with a commonly adopted assumption, new expressions for attitude error are derived. The formulas are easy to compute and represent the attitude error as a function of the nominal attitude of a vehicle, the baseline configuration and the receiver noise. Using the formula, the accuracy of the attitude can be analytically predicted without the computer simulations. Applications to some widely used configurations reveal the effectiveness of the proposed method.

Flow Analysis of a Commercial Passenger Airplane with or without Jet Engines (상용 여객기에서 엔진의 비장착/장착을 고려한 유동 해석)

  • Kim, Yang-Kyun;Kim, Sung-Cho;Choi, Jong-Wook;Kim, Jeong-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.277-280
    • /
    • 2006
  • This paper describes the aerodynamic interference characteristics between the ing and the engines in a commercial airplane which is realized by reverse engineering based on the photo measurement. Steady three-dimensional compressible inviscid Euler equation is solved in the unstructured grid system under the cruise condition. The lift and drag forces in the wing with engines increase by 1.49% and 3.9%, respectively compared with the wing without engines.

  • PDF