• Title/Summary/Keyword: 3 Degree of freedom(3DOF)

Search Result 149, Processing Time 0.029 seconds

3-Dimensional Path Planning and Guidance using the Dubins Curve for an 3-DOF Point-mass Aircraft Model (Dubins 곡선을 이용한 항공기 3자유도 질점 모델의 3차원 경로계획 및 유도)

  • O, Su-Hun;Ha, Chul-Su;Kang, Seung-Eun;Mok, Ji-hyun;Ko, Sangho;Lee, Yong-Won
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • In this paper, we integrate three degree of freedom(3DOF) point-mass model for aircraft and three-dimensional path generation algorithms using dubins curve and nonlinear path tracking law. Through this integration, we apply the path generation algorithm to the path planning, and verify tracking performance and feasibility of using the aircraft 3DOF point-mass model for air traffic management. The accuracy of modeling 6DOF aircraft is more accurate than that of 3DOF model, but the complexity of the calculation would be raised, in turn the rate of computation is more likely to be slow due to the increase of degree of freedom. These obstacles make the 6DOF model difficult to be applied to simulation requiring real-time path planning. Therefore, the 3DOF point-mass model is also sufficient for simulation, and real-time path planning is possible because complexity can be reduced, compared to those of the 6DOF. Dubins curve used for generating the optimal path has advantage of being directly available to apply path planning. However, we use the algorithm which extends 2D path to 3D path since dubins curve handles the two dimensional path problems. Control law for the path tracking uses the nonlinear path tracking laws. Then we present these concomitant simulation results.

A Three-Degree-of-Freedom Anthropomorphic Oculomotor Simulator

  • Bang Young-Bong;Paik Jamie K.;Shin Bu-Hyun;Lee Choong-Kil
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.227-235
    • /
    • 2006
  • For a sophisticated humanoid that explores and learns its environment and interacts with humans, anthropomorphic physical behavior is much desired. The human vision system orients each eye with three-degree-of-freedom (3-DOF) in the directions of horizontal, vertical and torsional axes. Thus, in order to accurately replicate human vision system, it is imperative to have a simulator with 3-DOF end-effector. We present a 3-DOF anthropomorphic oculomotor system that reproduces realistic human eye movements for human-sized humanoid applications. The parallel link architecture of the oculomotor system is sized and designed to match the performance capabilities of the human vision. In this paper, a biologically-inspired mechanical design and the structural kinematics of the prototype are described in detail. The motility of the prototype in each axis of rotation was replicated through computer simulation, while performance tests comparable to human eye movements were recorded.

Microcontroller based split mass resonant sensor for absolute and differential sensing

  • Uma, G.;Umapathy, M.;Kumar, K. Suneel;Suresh, K.;Josephine, A. Maria
    • Smart Structures and Systems
    • /
    • v.5 no.3
    • /
    • pp.279-290
    • /
    • 2009
  • Two degrees of freedom resonant systems are employed to improve the resonant property of resonant sensor, as compared to a single degree of freedom resonant system. This paper presents design, development and testing of two degrees of freedom resonant sensor. To measure absolute mass, cantilever shaped two different masses (smaller/absorber mass and bigger/drive mass) with identical resonant frequency are mechanically linked to form 2 - Degree-of-Freedom (DOF) resonator which exhibits higher amplitude of displacement at the smaller mass. The same concept is extended for measuring differential quantity, by having two bigger mass and one smaller mass. The main features of this work are the 3 - DOF resonator for differential detection and the microcontroller based closed loop electronics for resonant sensor with piezoelectric sensing and excitation. The advantage of using microcontroller is that the method can be easily extended for any range of measurand.

The Research of 2 DOF 3D Motion Simulator (2 DOF 3D 운동 시뮬례이터 실험)

  • 김영진;최명환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.260-260
    • /
    • 2000
  • In this work, we have developed a 2 degree of freedom(DOF) motion simulator that can generate the sensation of motion in a 6 DOF space. The motion base has the DOF of roll and pitch, and the purpose of the motion base is to create the sensation of riding a vehicle in a 3D space by controlling the motion base. The dynamics of the mechanism was analysed and the optimal design of the motion base mechanism has been reached. The prototype motion base mechanism was developed and tested. The multi-axis motion controller(MMC) was used to control the two ac servo motors that drive the roll and pitch motion.

  • PDF

Analysis of Parallel Mechanisms with Forward Position Closed-Form Solution with Application to Hybrid Manipulator (정위치 해석해를 가지는 병렬 메카니즘에 관한 분석과 혼합구조 매니퓰레이터로의 활용)

  • 김희국;이병주
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.324-337
    • /
    • 1999
  • In this work, a new 3-PSP type spatial 3-degree-of-freedom parallel mechanism is proposed. And a 6 DOF hybrid manipulator which consists of a 3-PPR type planar 3 DOF parallel mechanism and a new 3-PSP type spatial 3-degree-of-freedom parallel mechanism is proposed. Both 3 DOF mechanism modules have closed-form forward position solutions and particularly, 3-PSP spatial module has unique forward position solution. Firstly, the closed-form position analysis and first-order kinematic analysis for the proposed 3-PSP type module are carried out, and the first-order kinematic characteristics are examined via maximum singular value and the isotropic index of the mechanism. It is shown through these analyses that the mechanism has excellent isotrpic property throughout the workspace. Secondly, position and kinematic analysis of the 3-PPR planar module are briefly described. Thirdly, the forward position analysis for the 3-PPR 3-PSP type 6 degree-of-freedom hybrid mechanism consisting of a 3-PPR planar module and a 3-PSP spatial module is performed along with the analysis of the workspace size and first-order kinematic characteristics. The kinematic characteristics of the proposed hybrid manipulator are compared to those of geometrically similar Stewart manipulator.

  • PDF

Design and Analysis of Double Excited 3-Degree-of-Freedom Motor for Robots

  • Kwon, Byung-Il;Kim, Young-Boong
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.618-625
    • /
    • 2011
  • This paper presents a double excited three degree-of-freedom (3DOF) motor. The proposed 3DOF motor is designed with a laminated structure, making it easy to manufacture. In addition, it has windings on the stator and rotor, and does not require an expensive permanent magnet. We explain the structure, principle of motion, and design of the proposed motor, and perform an analysis of the static characteristics using the two- and three-dimensional finite element methods (3D FEM). The feasibility of 3D FEM analysis is confirmed by comparing the 3D FEM analysis and experimental results for the rolling and pitching motion. We also confirm the occurrence of holding torque in every motion.

Experiment and Torque Modeling of Double-Excited, Two-Degree-of-Freedom Motor based on Magnetic Equivalent Circuit Analysis

  • Kim, Young-Boong;Lee, Jae-Sung;Kwon, Byung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.130-136
    • /
    • 2013
  • This paper presents the magnetic equivalent circuit analysis of a double-excited, two-degree-of-freedom (DOF) motor. The double-excited, 2-DOF motor is a laminated structure, making it easy to manufacture and giving it simple operating principles. We explain the structure of the 2-DOF motor and analyze the static characteristics using a magnetic equivalent circuit (MEC) to reduce analysis time. The feasibility of MEC analysis was confirmed by experimental results of the tilting, panning motion. We also confirmed the occurrence of holding torque in every motion.

A Study on a Two-Degree-of-Freedom Servosystem Incorporating an Observer (관측기를 갖는 2자유도 서보계의 구성에 관한 고찰)

  • Kim, Y.B.
    • Journal of Power System Engineering
    • /
    • v.3 no.1
    • /
    • pp.50-54
    • /
    • 1999
  • In order to reject the steady-state tracking error, it is common to introduce integral compensators in servosystems for constant reference signals. However, if the mathematical model of the plant is exact and no disturbance input exists, the integral compensation is not necessary. From this point of view, a two-degree-of-freedom(2DOF) servosystem has been proposed, in which integral compensation is effective only when there is modeling error for disturbance input. The present paper considers the design problem of 2DOF servosystem incorporating an observer. It is shown that if a state feedback gain and a observer gain satisfy a condition, the integral effect does not appear when modeling error or disturbance input exists. This result means that the servosystem does not behave as a 2DOF servosystem.

  • PDF

A Proposal of a Novel Structured 3-DOF Spherical Motor (새로운 3-자유도 구형 모터의 제안)

  • Lee, Dong-Cheol;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.823-824
    • /
    • 2006
  • This paper proposes a novel structured 3-DOF(Degree-of-Freedom) spherical motor. 3-DOF spherical motor presents some attractive features by combining pitch, roll, yaw motion in a single joint. The proposed motor has pole which is electromagnetic in stator and rotor. poles produce magnetic flux through by exciting current then produce torque. We show a novel structured rotor to avoid mechanical overlapping of each coil in rotor. The validity of the analysis is confirmed by 3D finite element method.

  • PDF

Robust stability of a two-degree-of-freedom servosystem incorporating an observer with multiplicative uncertainty (관측기를 갖는 2자유도 서보계의 승법적인 불확실성에 대한 강인한 안정성)

  • Kim, Young-Bok;Yang, Joo-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 1997
  • In order to reject the steady-state tracking error, it is common to introduce integral compensators in servosystems for constant reference signals. However, if the mathematical model of the plant is exact and no disturbance input exists, the integral compensation is not necessary. From this point of view, a two-degree-of-freedom(2DOF) servosystem has been proposed, in which the integral compensation is effective only when there is a modeling error or a disturbance input. The present paper considers robust stability of this 2DOF servosystem incorporating an observer to the structured and unstructured uncertainties of the controlled plant. A robust stability condition is obtained using Riccati inequality, which is written in a linear matrix inequality (LMI) and independent of the gain of the integral compensator. This result impies that if the plant uncertainty is in the allowable set defined by the LMI condition, a high-gain integral compensation can be carried preserving robust stability to accelerate the tracking response.

  • PDF