• Title/Summary/Keyword: 3 D.O.F

Search Result 780, Processing Time 0.05 seconds

Modal Sky-Hook Dampers for Active Suspension Control (능동형 현가시스템을 위한 모드 SKY-HOOK 감쇠 제어기)

  • 곽병학;박영진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.4
    • /
    • pp.1-11
    • /
    • 1995
  • Active suspension control for vehicles is developed to improve both ride comfort and steering stability which are in trade off relation. In this study, the modal sky-hook controller for 7 D. O. F. model is proposed to resolve the problems such as computaional power restriction and uncertainties in modeling of systems and environments. Modal sky-hook controller reduces the coupling between the modes to be controlled. The simulation result for ride comfort shows that the perform ance of the proposed controller matches that of the optimal controller. Systematic method of determining its gain is proposed. The model sky-hook controller shows the robustness to road irregularity and modeling error.

  • PDF

Development of Three D.O.F. Parallel Manipulator for Micro-motion (미세구동을 위한 3자유도 병렬식 매니퓨레이터 개발에 관한 연구)

  • 이계영;한창수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1067-1070
    • /
    • 1995
  • In this paper, we have treated the modeling and development of three degree of freedom parallel manipulator for micromotion based on the Stewart platform type parallel structure. the kinematic modeling was derived from the relation between base coordinate and platform anr the dynamic modeling was from the method of Kinematic Influence Coefficients(KIC) and transferring of the generalized coordinates. Using this method, we presented the method to choose the actuator and joint by investigating the actuating forces needed when the manipulator moves along the given trajectory. In the end, the prototype manipulator was developmented and evaluated.

  • PDF

Optimal configuration control for redundant robot manipulators-manipulability-based approach (여유 자유도 로봇의 최적 자세 제어)

  • Lee, Ji-Hong;Lee, Mi-Gyung;Lee, Young-Il;Yoo, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.739-742
    • /
    • 1996
  • Several figures representing velocity transmission from joint space to task space are analyzed and compared with each other. The figures include velocity ellipsoid derived from Jacobian matrix, scaled velocity ellipsoid derived from normalized joint velocities, polytope derived by numerical scaling, and polytopes derived by linear combinations of Jacobian column vectors. The results show that the optimal directions given by the measures are not the same and the conventional velocity ellipsoid is not good choice as optimization measure as far as the moving direction is concerned. Simulation examples for 3 d.o.f. redundant robot manipulators in 2-dimensional task space are given for comparison study.

  • PDF

Navigation of a Mobile Robot Using the Hand Gesture Recognition

  • Kim, Il-Myung;Kim, Wan-Cheol;Yun, Jae-Mu;Jin, Tae-Seok;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.126.3-126
    • /
    • 2001
  • A new method to govern the navigation of a mobile robot is proposed based on the following two procedures: one is to achieve vision information by using a 2 D-O-F camera as a communicating medium between a man and a mobile robot and the other is to analyze and to behave according to the recognized hand gesture commands. In the previous researches, mobile robots are passively to move through landmarks, beacons, etc. To incorporate various changes of situation, a new control system manages the dynamical navigation of a mobile robot. Moreover, without any generally used expensive equipments or complex algorithms for hand gesture recognition, a reliable hand gesture recognition system is efficiently implemented to convey the human commands to the mobile robot with a few constraints.

  • PDF

Robust Vibration Control for a Building with Parameter Uncertainty (파라미터 불확실성을 고려한 건물의 견실 진동 제어)

  • 최재원;김신종;이만형
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.575-583
    • /
    • 2000
  • In this paper, we design a vibration control system that includes a 3-D.O.F. mass-spring-damper structure for the analytical model of a building that is excited at the base of this structure by an external dynamic force, and one Active Mass Damper(AMD) on the top of this structure to generate control forces fro attenuation of the structural response. Two robust controllers based on $\mu$-synthesis and H$\infty$ optimal control are designed for the structural system to show that the performance of a control system can be degraded by some parameter uncertainties such as mass, stiffness coefficients, and/or damping coefficients. The performance of the two controllers are compared in terms of nominal performance, robust stability and robust performance by simulations.

  • PDF

Dynamic Stability Evaluation of Special Bridge for High Speed Railroad under Vertical Ground Motion (연직 지진하중을 받는 고속철도 특수교량의 주행안정성 평가)

  • Kim, Dong-Seok;Kim, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1464-1469
    • /
    • 2010
  • In this paper, the dynamic stability evaluation of special bridge for high speed railway under ground excitation is performed. The mass, damping, stiffness matrices of bridge are derived from the modal frequencies and mode shape vectors which can be obtained by commercial program. And the high speed train is modeled as multi-single d.o.f models for the sake of vehicle-bridge interaction analysis. In the vehicle-bridge interaction analysis, the vertical directional interaction is only considered. As a numerical example, the 3 span Extradosed bridge which is expected to be installed in Ho-Nam high speed railroad is considered. The analysis results show that the example bridge satisfies the criteria of dynamic stability.

  • PDF

A Vibration Mode Analysis of Resilient Mounting System and Foundation Structure of Acoustic Enclosure using Finite Element Method (유한요소법을 이용한 음향차폐장치용 탄성마운트 시스템 및 받침대의 진동모드 해석)

  • 정우진;배수룡;함일배
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.493-501
    • /
    • 1999
  • The vibration modes of resilient mounting system and foundation structure which support diesel engine/generator set and acoustic enclosure walls play an important role in the vibration transmission process. So, it is necessary to perform vibration mode analysis of resilient mounting system and foundation structure. For some reasons, if the vibration modal analysis of resilient mounting system and foundation structure of acoustic enclosure could be simultaneously done by finite element method, it would be very efficient approach. In this paper, vibration modal analysis method using finite element method for multi stage mounting system having n d.o.f model was proposed. Vibration analysis of single and double stage resilient mounting system was performed to verify the validity of the proposed method. Also frequency response results were compared in case of rigid foundation model and finite element foundation model which was compared with experimental modal analysis results.

  • PDF

A Study on Improving Performance Characteristic of Multi-D.O.F Spherical Wheel Motor (다자유도 모터의 구동특성 개선을 위한 연구)

  • Kang, Dong-Woo;Won, Sung-Hong;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.6-8
    • /
    • 2008
  • Electrical machineries have been developed as following with various and high technical application in these days. Especially the robot is integrated system including mechanical structure, electronic control, and electrical technology. The robot system is not compact and has not natural motion like human, although the technology of robot has been developing continuously. The spherical wheel motor is useful electric machine for using robot joint as operation of 3-degrees of freedom. In this paper, a permanent magnet spherical wheel motor is introduced and performance characteristics are analyzed for improving of operation stability.

  • PDF

Neural Robust Control for Perturbed Crane Systems

  • Cho Hyun-Cheol;Fadali M.Sami;Lee Young-Jin;Lee Kwon-Soon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.591-601
    • /
    • 2006
  • In this paper, we present a new control methodology for perturbed crane systems. Nonlinear crane systems are transformed to linear models by feedback linearization. An inverse dynamic equation is applied to compute the system PD control force. The PD control parameters are selected based on a nominal model and are therefore suboptimal for a perturbed system. To achieve the desired performance despite model perturbations, we construct a neural network auxiliary controller to compensate for modeling errors and disturbances. The overall control input is the sum of the nominal PD control and the neural auxiliary control. The neural network is iteratively trained with a perturbed system until acceptable performance is attained. We apply the proposed control scheme to 2- and 3-degree-of-freedom (D.O.F.) crane systems, with known bounds on the payload mass. The effectiveness of the control approach is numerically demonstrated through computer simulation experiments.

Higher Order Quadrilateral Plate Bending Finite Element (고차(高次) 판(板) 사각형(四角形) 유한요소(有限要素))

  • Shin, Young Shik;Shin, Hyun Mook;Kim, Myung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.25-32
    • /
    • 1988
  • A formulation of an isoparametric quadrilateral higher-order plate bending finite element is presented. The 8-noded 28-d.o.f. plate element has been degenerated from the three-dimensional continuum by introducing the plate assumptions and considering higher-order in-plane displacement profile. The element characteristics have been derived by the Galerkin's weighted residual method and computed by using the selective reduced integration technique to avoid shear-locking phenomenon. Several numerical examples are given to demonstrate the accuracy and versatility of the proposed quadrilateral higher-order plate bending element over the other existing plate finite elements in both static and dynamic analyses.

  • PDF