• Title/Summary/Keyword: 3 축 힘/모멘트센서

Search Result 10, Processing Time 0.034 seconds

Development of a 6-axis Robot's Finger Force/Moment Sensor for Stably Grasping an Unknown Object (미지물체를 안전하게 잡기 위한 6축 로봇손가락 힘/모멘트센서의 개발)

  • 김갑순
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.105-113
    • /
    • 2003
  • This paper describes the development of a 6-axis robot's finger force/moment sensor, which measures forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously, for stably grasping an unknown object. In order to safely grasp an unknown object using the robot's gripper, it should measure the force in the gripping direction and the force in the gravity direction, and perform the force control using the measured forces. Thus, the robot's gripper should be composed of 6-axis robot's finger force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In this paper, the 6-axis robot's finger force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of made sensor was performed. and the result shows that interference errors of the developed sensor are less than 3%. Also, Robot's gripper with the 6-axis robot's finger force/moment sensor for the characteristic test of force control was manufactured, and the characteristic test for grasping an unknown object was performed using it. The fabricated gripper could grasp an unknown object stably. Thus, the developed 6-axis robot's finger force/moment sensor may be used for robot's gripper.

Development of a small 6-axis force/moment sensor for robot's finger (로봇 손가락용 소형 6축 힘/모멘트센서 개발)

  • 김갑순;이상호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.490-493
    • /
    • 2003
  • This paper describes the development of a small 6-axis force/moment sensor for robot's finger, which measures forces Fx. Fy, Fz, and moments Mx, My, Mz simultaneously. In order to safely grasp an unknown object using the robot's gripper, and accurately perceive the position of it in the gripper, it should measure the force in the gripping direction, the force in the gravity direction and the moments each direction. and perform the control using the measured forces and moments. Thus, the robot's gripper should be composed of 6-axis force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My. Mz simultaneously. In this paper, the small 6-axis force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of made sensor was performed, and the result shows that interference errors or the developed sensor are less than 3%. Thus, the developed small 6-axis force/moment sensor may be used for robot's gripper.

  • PDF

Development of 6-axis Force/moment Sensor for Humanoid Robot's Head Reacting to a External Force (외력에 반응하는 인간형 로봇의 머리를 위한 6 축 힘/모멘트 센서 개발)

  • Kim, Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.78-84
    • /
    • 2009
  • When external force is applied to humanoid robot's head, humanoid robot's neck is rotated to prevent the damage of it. So, robot's neck have to perceive forces (Fx of x-direction, Fy of y-direction and Fz of z-direction) and moments (Mx of x-direction, My of y-direction and Mz of z-direction) using the attached 6-axis force/moment sensor. Thus, in this paper, 6-axis force/moment sensor was developed to sense the forces and moments applied to robot's head. The structure of 6-axis force/moment sensor was modeled newly, and it was designed using FEM software (ANSYS) and manufactured by attaching straingages on the sensing element, finally, the characteristic test of the sensor was carried out. As a result, it is confirmed that interference error is less than 3%. And, it is thought that the sensor can be used to measure the forces and the moments for humanoid robot's head.

Development of Force Sensors of Toes and Heel for Humanoid Robot's Intelligent Foot (인간형 로봇의 지능형 발의 발가락 및 뒤꿈치 힘센서 개발)

  • Kim, Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.61-68
    • /
    • 2010
  • In order to let the humanoid robot walk on the uneven terrains, the robot's foot should have the similar structure and function as human's. The intelligent foot should be made up of toes and heel. When it walks on the uneven terrains, the foot's sole senses the force and adjusts foot's position before robot losing his balance. In this paper, the force sensors of robot's intelligent foot for having the similar structure and function like human are developed. The heel 3-axis force/moment sensor and toe force sensors for humanoid robot's intelligent foot is developed, and the characteristic tests of them are carried out. As a result of characteristic test, the interference error of the heel 3-axis force/moment sensor is less than 2.2%. It is thought that the developed force sensors could be used to measure the reaction forces which is applied the toes and the heel of a humanoid robot.

Hand Pressing Control Using the Five-Axis Force/Moment Sensor of Finger Rehabilitation (손가락 재활로봇의 5축 힘/모멘트센서를 이용한 손 누름제어)

  • Kim, Hyeon-Min;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.192-197
    • /
    • 2012
  • This paper describes the control of the hand fixing system attached to the finger rehabilitation robot for the rehabilitation exercise of patient's fingers. The finger rehabilitation robot is used to exercise the finger rehabilitation, and a patient's hand is safely fixed using the hand fixing system. In this paper, the hand fixing system was controlled with PD gains to fix a palm of the hand, and the characteristic test for the hand fixing system was carried out to sense the fixed hand movement of the front and the rear, that of the left and the right, and that of the upper. It is thought that the hand fixing system could safely fix the hand, and the movement of the fixed hand could be perceived using the five-axis force/moment sensor attached to the hand fixing system.

Development of a Small 6-axis Force/Moment Sensor for Robot′s Finger (로봇 손가락용 소형 6축 힘/모멘트센서 개발)

  • 김갑순
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.51-58
    • /
    • 2004
  • This paper describes the development of a small 6-axis force/moment sensor for robot's finger, which measures farces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In order to safely grasp an unknown object using the robot's gripper, and accurately perceive the position of it in the gripper, it should measure the force in the gripping direction, the force in the gravity direction and the moments each direction, and perform the force control using the measured forces and moments. Also, it should detect the moments Mx (x-direction moment), My and Mz to accurately perceive the position of the object in the grippers. Thus, the robot's gripper should be composed of 6-axis force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In this paper, the small 6-axis force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test for the developed sensor was performed, and the result shows that intereference errors of the developed sensor are less than 4.23%. Thus, the developed small 6-axis force/moment sensor may be used a robot's gripper.

Development of an Equilibrium Sensation Measuring System for Human Being (사람의 평형감각 측정시스템 개발)

  • Kim, Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.62-69
    • /
    • 2009
  • This paper describes the development of the new type equilibrium sensation measuring system for human with handicap in the equilibrium sensation. The medium and small hospital could not use the developed equilibrium sensation measuring system, because it is very high prices. Therefore, the new type system should be developed to measure the numerical value of the equilibrium sensation in human with handicap. In this paper, First, two 3-axis force/moment sensors which can measure force Fz, moments Mx and My simultaneous were designed and manufactured, second, the high speed measuring device which can acquire the output from two 3-axis force/moment sensors, third, the new type equilibrium sensation measuring system was developed, then the characteristic test of the developed equilibrium sensation measuring system carried out, it is confirmed that the system could measure the swing body of human with handicap.

Development of 6-axis force/moment sensor for a humonoid robot (인간형 로봇을 위한 6축 힘/모멘트센서 개발)

  • Kim, Gab-Soon;Shin, Hyi-Jun
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.211-219
    • /
    • 2007
  • This paper describes the development of 6-axis force/moment sensor for a humanoid robot. In order to walk on uneven terrain safely, the robot's foot should perceive the applied forces Fx, Fy, Fz and moments Mx, My, Mz to itself, and be controlled by the foot using the forces and moments. Also, in order to grasp unknown object safely, the robot's hand should perceive the weight of the object using the mounted 6-axis force/moment sensor to its wrist, and be controlled by the hand using the forces and moments. Therefore, 6-axis force/moment sensor should be necessary for a humanoid robot's hand and foot. In this paper, 6-axis force/moment sensor for a humanoid robot was developed using many PPBs (parallel plate-beams). The structure of the sensor was newly modeled, and the sensing element of the sensor was designed using theoretical analysis. Then, 6-axis force/moment sensor was fabricated by attaching strain-gages on the sensing elements, and the characteristic test of the developed sensor was carried out. The rated outputs from theoretical analysis agree well with the results from the experiments.

Design and Fabrication of 6-Component Forces and Moments Sensor Using a Column Structure (원기둥을 이용한 6축 힘/모멘트 센서의 설계 및 제작)

  • Shin, Hong-Ho;Kim, Jong-Ho;Park, Yon-Kyu;Joo, Jin-Won;Kang, Dae-Im
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1288-1295
    • /
    • 2002
  • The column-type sensing element in building and mechanical construction parts was designed as three forces and three moments sensor by attaching strain gages approximately. Compared to conventional multi-component sensor, the designed sensor has high stiffness and low cost. The radius of the column was designed analytically and compared with finite element analysis. The interference errors between components were minimized by using addition and subtraction procedure of signals. The fabricated sensor was tested by using a deadweight force standard machine and a six-component force calibration machine. The calibration results showed that the 6-component forces and moments sensor had interference error less than 7.3 % between $F_x$ and $M_x$ components, and 5.0 % in case of other components.

Development of Cylindrical-object Grasping Force Measuring System with Haptic Technology for Stroke's Fingers (햅틱기술을 이용한 뇌졸중환자의 원통물체잡기 힘측정장치 개발)

  • Kim, Hyeon Min;Kim, Gab Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.300-307
    • /
    • 2013
  • This paper describes the development of a cylindrical-object grasping force measuring system applied haptic technology to measure the grasping force of strokes patients' fingers and other patients' paralyzed fingers. Because the cylindrical-object and the force measuring device of the developed cylindrical-object grasping force measuring system are connected with the electrical wires, patients and their families have difficulty not only measuring the patients' grasping force using the system but also knowing their rehabilitation extent when using it. In this paper, the cylindrical-object grasping force measuring system applied haptic technology was developed, and the cylindrical-object grasping force measuring device sends data to the rehabilitation evaluating system applied haptic technology by wireless communication. The grasping force measurement characteristic test using the system was carried out, and it was confirmed that the rehabilitation extent of the patients' paralyzed fingers and normal people fingers can be evaluated.