• Title/Summary/Keyword: 3 차원 유동박리

Search Result 40, Processing Time 0.02 seconds

Three-dimensional Effects of an Axi-symmetric Pintle Nozzle (축대칭 핀틀노즐의 3차원 효과 분석)

  • Lee, Gang-Min;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.47-55
    • /
    • 2018
  • In order to determine whether three-dimensional effects exist in a pintle nozzle of axisymmetric shape, a three-dimensional numerical analysis was performed. The compressibility correction was implemented with the k-${\omega}$ SST turbulence model to predict the complex flow separation transition in acceptable accuracy. Recirculation zones were observed at both the front end and rear faces of the pintle, and the flow through the pintle nozzle conveyed complex shock wave structures. Three-dimensional effects that resulted from the reasonable flow separation location were noted, and a trace of the transient pressure increase was observed, mismatched by a two-dimensional axi-symmetric analysis.

Transition Flow Analysis According to the Change of Reynolds Number for Supersonic Launch Vehicle Fairing Expansion Area (초음속 발사체 선두 팽창부의 레이놀즈수 변화에 따른 천이 유동 해석)

  • Shin, Ho-Cheol;Park, Soo-Hyung;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.367-375
    • /
    • 2017
  • RANS computational analysis was performed on the head of the launch vehicle including the hammerhead nose pairing in the supersonic regime. The two-dimensional axisymmetric analysis was performed by using laminar, fully turbulent and transition models and compared with the experimental data. It was observed that different flow phenomena occurred depending on the Reynolds number. Under the high Reynolds number condition, the boundary layer becomes turbulent, which is not separated from the surface of the launch vehicle. With the low Reynolds number condition, laminar separation bubble was produced due to the separation and reattachment of the boundary layer on the expansion-compression edge of the hammerhead type nose fairing. The three-dimensional computations with the angle of attack showed a fully detached vortical structure due to the laminar separation bubble. It is proved that the turbulent transition should be considered to predict the separation bubble with the Reynolds number.

Numerical Study for 3D Turbulent Flow in High Incidence Compressor Cascade (고입사각 압축기 익렬 내의 3차원 난류유동에 관한 수치적 연구)

  • 안병진;정기호;김귀순;임진식;김유일
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.3
    • /
    • pp.29-36
    • /
    • 2002
  • A numerical analysis based on two-dimensional and three-dimensional incompressible Wavier-Stokes equations has been carried out for double-circular-arc compressor cascades and the results are compared with available experimental data at various incidence angles. The 2-D and 3-D computational codes based on SIMPLE algorithm adopt pressure weighted interpolation method for non-staggered grid and hybrid scheme for the convective terms. Turbulence modeling is very important for prediction of cascade flows, which are extremely complex with separation and reattachment by adverse pressure gradient. Considering computation times, $\kappa$-$\varepsilon$ turbulence model with wall function is used.

Numerical Study for 3D Turbulent Flow in High Incidence Compressor Cascade (고입사각 압축기 익렬내의 3차원 난류유동에 관한 수치적 연구)

  • 안병진;정기호;김귀순;임진식;김유일
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.35-40
    • /
    • 2002
  • A numerical analysis based on two-dimensional and three-dimensional incompressible Navier-Stokes equations has been carried out for double-circular-arc compressor cascades and the results are compared with available experimental data at various incidence angles. The 2-D and 3-D computational codes based on SIMPLE algorithm adopt pressure weighted interpolation method for non-staggered grid and hybrid scheme for the convertive terms. Turbulence modeling is very important for prediction of cascade flows, which are extremely complex with separation and reattachment by adverse pressure gradient. In this paper k-$\varepsilon$ turbulence model with wall function is used to increase efficiency of computation times.

  • PDF

Boundary Layer Separation Control with Fairing at the Junction of 3D Wings Under Ground Effect (페어링을 이용한 지면효과를 받는 3차원 날개 접합부의 경계층 박리 제어)

  • Cho Ji. H.;Moon Young. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.57-64
    • /
    • 2005
  • Aerodynamic characteristics of three-dimensional wings in ground effect for Aero-levitation Electric Vehicle(AEV) are numerically investigated for various fairing shapes at the junctions of 3D Wings. Numerical results show that a sizeable three-dimensional comer flow separation occurs with formation of an arch vortex at the junction of main and vertical wings, and also that this is predicted the main cause of the high lift-to-drag(L/D) reduction rate of the main wing. To avoid the comer flow separation, the main idea of this study is to reduce the cross section gradient of the comer flow tube near the trailing edge for various fairing shapes. Improvements on L/D ratios of the wings are pursued by breaking the coherence of superimposed adverse pressure gradients at the wing junction when the cross section gradient is changed slowly at the trailing edge.

  • PDF

Numerical Study on Viscous Wakes of Two-Dimensional Screens Normal to the Uniform Stream (균일유동에 수직인 2차원 스크린 후류의 점성유동에 관한 수치적 연구)

  • 강신형;전우평
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.590-598
    • /
    • 1988
  • Viscous flows through a screen normal to an uniform flow are numerically simulated. A .kappa.-.epsilon. model is adopted for evaluation of the Reynolds stresses. The existence of a screen is regarded as extra sources in the momentum equations. The amount of extra sources is related to the resistance coefficient and the refraction coefficient of the screen. Flows are numerically simulated for various resistance coefficients and heights of the screen and Reynolds numbers. The present method has been verified to reasonably simulate viscous wakes and shear layers of the screen, for which the inviscid theory is quite limitted. As the fluids approach the screen, the velocity is reduced and the pressure is raised to satisfy the Bernoulli equation. After passing the screen, the velocity shows its minimum value at the down-stream, but static pressure is slowly recovered. A detached separation-bubble from the screen appears as the resistance coefficient is increased to a certain level. Such results are qualitatively in agreement with limitted experimental data available. The turbulent kinetic energy shows its maximum value at further down stream and decrease thereafter.

A Study of PIV Analysis around 2-Dimensional Foil with Blowing (물분사장치를 이용한 2차원 익 주위의 PIV 해석에 관한 연구)

  • Oh, Kyoung-Gun;Cho, Dae-Hwan;Lee, Gyoung-Woo;Ko, Jae-Yong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.45-49
    • /
    • 2006
  • The flow around a foil with waterjet was investigated using the two-frame PIV(CACTUS 3.1) system. After separation, unsteady recirculation & reattachment region was shown as a result at reading edge. Separation area was decreased to 1/3 more by waterjet system with coanda effect. Angle of attack and waterjet velocity was a variable in the experiment. Each parameters was controlled to $0^{\circ}{\sim}35^{\circ}$ and 0[m/s]${\sim}$9.2[m/s]. The separation of flow appearanced at first when the angle of attack is $17^{\circ}{\sim}18^{\circ}$. However, according to grew up of velocity, beginning of the separation was delayed. In this experiment, vortex and separation region was disappeared by blown when each parameters are low level, and separation controlled more certainly.

  • PDF

Local Convective Mass Transfer and Flow Structure Around a Circular Cylinder with Annular Fins (환상핀이 부착된 원봉 주위의 3차원 박리 유동구조 및 물질전달 특성 해석)

  • 박태선;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2132-2146
    • /
    • 1991
  • Extensive experiments were carried out to investigate the mass transfer and flow structures around a circular cylinder with annular fins in crossflow. The naphthalene sublimation method was employed to measure the circumferential and longitudinal variations of mass transfer from the circular cylinder between annular fins and H is the height of the fin from the cylinder surface. A remarkable enhancement of mass transfer due to the horseshoe vortices was observed near the corner junction between the annular fin and circular cylinder. The present results indicate that the local circumferential Sherwood number shows the higher values on the front stagnation point. The maximum augmentation of mass transfer rate at the center of cylinder is found near L/H-0.15 due to the separation bubble along the annular fins. The secondary flows, which are the corner vortices V2 and V3 near the end wall of the annular fin, are fairly predicted from the distributions of local Sherwood number in the spanwise direction. The average Sherwood number of overall surface at L/H=0.15 is larger 2.0 times than that of without annualr fins. The correlations of total average mass transfer rate with L/H and Re$_{L}$ can also be obtained.d.

A Study on Turbulent Boundary Layer around a Two-Dimensional Hydrofoil using LDV System (레이저 유속계를 이용한 2차원날개 단면 주위의 난류경계층 연구)

  • J.W. Ahn;J.T. Lee;K.S. Kim;C.Y. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.146-158
    • /
    • 1991
  • The flow around a two-dimensional foil section Is measured by a LDV(Laser Doppler Velocimetry) system which is capable of measuring the datailed flow field without interfering the original flow field. A 2-color 3-beam LDV system, which is capable of mea,;tiring 2 velocity components simultaneously and uses 2W Ar-Ion laser source, is used to measure the flow field around an NACA0012 foil section. The measured flow velocities are analysed iii order to study the boundary layer characteristics, flow separation and the detail structure of the flow near the trailing edge of the foil. The boundary layer characteristics are compared with the results by the head's momentum integral method. For the case of small angle of attack at relatively higher Reynolds number, both results show good agreements. The measured data of the velocity field around an NACA0012 foil section would be valuable data to validate the CFD(Computational Fluid Dynamic) calculation results. The developed experimental technique to evaluate the characteristics of two-dimensional foil sections is essential tool to develope new blade sections which have good lift characteristics and better cavitation performances.

  • PDF

Computation of Four Quadrant Performance for a Marine Propeller in Open Water (박용 프로펠러의 4상한 단독성능 계산)

  • Hyoung-Tae Kim;Jeong-Jung Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.1-10
    • /
    • 2001
  • A numerical solution method of the incompressible Reynolds-Averaged Navier-Stokes equations is applied for calculating turbulent flows and performances of a marine propeller in open-water, four-quadrant conditions. Computed propeller flows of the model propeller P4381, for which the experimental data of the open-water performances exist, reveal complex viscous-flow characteristics including three-dimensional flow separations in various off-design conditions and also computed propeller thrusts and torques agree quite well with experimental data except some cases for which severe propeller cavitations occurred in the experiment.

  • PDF