• Title/Summary/Keyword: 3축 로봇

Search Result 132, Processing Time 0.024 seconds

A Study on Real-Time Trajectory Tracking Control of SCARA Robot with Four Joints Based on Visual Feedback (영상 피드백에 의한 4축 스카라 로봇의 실시간 궤적추적제어에 관한 연구)

  • Jung, Yang-Guen;Shim, Hyun-Seok;Lee, Woo-Song;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.3
    • /
    • pp.136-144
    • /
    • 2014
  • This paper proposes a new approach to the designed of visual feedback control system based on visual servoing method. The main focus of this paper is presents how it is effective to use many features for improving the accuracy of the visual feedback control of industrial articulated robot for assembling and inspection of parts. Some rank conditions, which relate the image Jacobian, and the control performance are derived. It is also proven that the accuracy is improved by increasing the number of features. The effectiveness of redundant features is verified by the real time experiments on a SCARA type robot(FARA) made in samsung electronics company.

A Study on Gait Imbalance Evaluation System based on Two-axis Angle using Encoder (인코더를 이용한 2축 각도 기반 보행 불균형 평가 시스템 연구)

  • Shim, Hyeon-min;Kim, Yoohyun;Cho, Woo-Hyeong;Kwon, Jangwoo;Lee, Sangmin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.401-406
    • /
    • 2015
  • In this study, the gait imbalance evaluation algorithm based on two axes angle using encoder is proposed. This experiment was carried out to experiment with a healthy adult male to 10 people. The device is attached to the hip and knee joint in order to measure the angle during the gait. Normal and imbalance gait angle data were measured using an encoder attached to the hip and knee joints. Also, in order to verify the reliability of estimation of asymmetrical gait using hip and knee angle, it was compared with the result of asymmetrical gait estimation using foot pressure. SI (Symmetry Index) was used as an index for determining the gait imbalance. As a result, normal gait and 1.5cm imbalance gait were evaluation as normal gait through SI using an encoder. And imbalance gait of 3cm, 4cm, and 6cm were judge by imbalance gait. Whereas all gait experiments except normal gait were evaluation as imbalance gait through SI using the pressure. It was possible to determine both the normal gait and imbalance gait through measurement for the angle and the pressure.

A Study on The Straightness Improvement Method for Ensure Safety of Mobile Walker in Slope (경사로에서의 안정성 확보를 위한 Mobile Walker의 직진성 향상 기법에 관한 연구)

  • Lee, W.Y.;Lee, D.K.;Lee, E.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.8 no.3
    • /
    • pp.187-196
    • /
    • 2014
  • This paper suggests linearity enhancement algorithm to Ensure safety of Mobile Walker on Slope. Mobile Walker happens to get off track due to external forces from Walker's weight and the degree of the slope while slope driving. In order to compensate this, this research used the controller that estimates the external forces according to the slope of road surface and adjusts it to the motor output. Also, through comparisons between targeted rotational angular velocity which the user inputs and its velocity of the robot, algorithm was applied which applies a weight to each shaft. As a result of applying the proposed correction controller, it diverges in case of non-compensation experiments that deviates when moving, but it case of applying the ramp calibration algorithm, the deviation distance at max was within 10cm that it keeps safe driving, and change rate of deviation distance was also stabilized after 1m where no more changes occurred.

  • PDF

Development of Calf Link Force Sensors of Walking Assist Robot for Leg Patients (다리 환자를 위한 보행보조로봇의 종아리 링크 3축 힘센서 개발)

  • Kim, Han-Sol;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.114-121
    • /
    • 2017
  • This paper describes the design and fabrication of a three-axis force sensor with parallel plate beams (PPSs) for measuring the calf force while a patient with a walking assist robot is walking. Current walking assist robots can't measure the weight of the patient's leg and the robot's leg which required for robot control. So, the three-axis force sensor in the calf link is designed and manufactured, it is composed of a Fx force sensor, a Fy force sensor and a Fz force sensor. The three-axis force sensor was designed using by FEM(Finite Element Method), and fabricated using strain-gages. The characteristics experiment of the three-axis force sensor was carried out respectively. The test results indicated that the repeatability error and the non-linearity error of three-axis force sensor was less than 0.04% respectively. Therefore, the fabricated three-axis force sensor in the calf link can be used to measure the patient's calf force in the walking assist robot.

Development of a Small 6-axis Force/Moment Sensor for Robot′s Finger (로봇 손가락용 소형 6축 힘/모멘트센서 개발)

  • 김갑순
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.51-58
    • /
    • 2004
  • This paper describes the development of a small 6-axis force/moment sensor for robot's finger, which measures farces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In order to safely grasp an unknown object using the robot's gripper, and accurately perceive the position of it in the gripper, it should measure the force in the gripping direction, the force in the gravity direction and the moments each direction, and perform the force control using the measured forces and moments. Also, it should detect the moments Mx (x-direction moment), My and Mz to accurately perceive the position of the object in the grippers. Thus, the robot's gripper should be composed of 6-axis force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In this paper, the small 6-axis force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test for the developed sensor was performed, and the result shows that intereference errors of the developed sensor are less than 4.23%. Thus, the developed small 6-axis force/moment sensor may be used a robot's gripper.

Kinematic and dynamic analysis of a spherical three degree of freedom joint rehabilitation exercise equipment (3자유도 구형관절 재활운동기기의 기구학 및 동역학 해석)

  • Kim, Seon-Pil
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.4
    • /
    • pp.16-29
    • /
    • 2009
  • This paper investigates the kinematic and dynamic analysis of a spherical three degree of freedom parallel joint module, which is used in the exercise equipment for balance and leg-strength improvement of aged people. The joint module has three dyads which consist of two links and three revolute joints, and their all joints intersect at the global point located at the module's center. The paper shows the explicit mathematical procedure for deriving the closed form solutions in the inverse and forward position analysis of this parallel joint module. In velocity and acceleration analysis, we derived relations for joint velocities and accelerations of dyads and rotational velocity and acceleration of the top plate. For applying this module to rehabilitation exercise, we determined the dynamic model of the Korean males in their 50s and examined the model's results by dynamic model simulation.

A Study on Heat Treatment Characteristic of HPDL to Surface Hardening for Press Die(I) - Characteristics of Laser Heat Treatment on FCD550 for Drawing Process - (프레스 금형의 표면경화를 위한 고출력 다이오드 레이저의 열처리 특성에 관한 연구(I) - 드로잉공정 적용을 위한 FCD550 소재의 레이저 열처리 특성 -)

  • Kim, Jong-Do;Song, Moo-Keun;Lee, Chang-Je;Hwang, Hyun-Tae
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.95-95
    • /
    • 2010
  • 자동차 산업에서 차체를 성형하는 프레스 금형 산업은 꾸준히 증가하고 있는 자동차 생산대수와 함께 성장해가고 있으며, 자동차 산업의 국제 경쟁이 심해지고 소비자들의 요구가 다양해짐에 따라 신제품 개발주기에 발맞추어 금형의 제작에도 단납기 및 비용절감을 위한 노력과 제품의 품질 향상을 위해 신기술, 신공법이 적용되고 있다. 한편 자동차 차체를 제작하는 프레스 금형가공은 박판소재를 원하는 형상으로 제작하는 공정으로써, 프레스의 상 하 운동을 이용하여 강판을 성형한다. 이러한 금형의 형태는 곧 자동차 차체 제품의 형태를 완성하므로 제품을 성형하는 도중에 금형과 소재의 마찰에 의해 금형의 마모나 마멸이 발생하여 제품의 품질을 저하시킬 우려가 있다. 따라서 금형의 내마모성 및 수명을 향상시키기 위한 방안들 중 표면경화처리가 행해지고 있으며, 그중 공정 속도가 빠르고 국부적인 열처리가 가능한 레이저 표면처리 방법이 많은 관심을 받고 있다. 본 연구에서는 이러한 금형의 성질을 향상시키기 위해 고출력 다이오드 레이저를 이용하여 프레스 금형공정 중 드로잉(drawing) 공정에의 적용을 위한 표면경화처리를 실시하였다. 최대출력 4.0kW의 다이오드 레이저를 사용하였으며, 6축 외팔보 로봇에 열처리용 광학계를 장착하여 열처리를 실시하였다. 또한 광학계 부근에는 적외선 온도센서가 부착되어있어 열처리시 시험편의 표면온도를 실시간으로 측정할 수 있도록 구성되어져있다. 시험편은 금형재료용 구상흑연 주철인 FCD550 소재를 사용하였으며, 공정변수에 따른 열처리 특성을 파악하고, 그 경화특성을 평가하였다. 실험 결과, FCD550 소재의 표면 열처리시 레이저 출력 3.5kW, 빔 이송속도 3mm/sec에서 최적의 열처리 특성을 나타내었으며, 이때의 최고 경도는 930Hv을 나타내며 모재에 비해 경도가 3배 정도 상승하는 우수한 경화특성을 보였다.

  • PDF

Development of the Manipulator of a Cucumber Robotic Harvester (오이 로봇 수확을 위한 매니퓰레이터 개발)

  • 민병로;문정환;이대원
    • Journal of Bio-Environment Control
    • /
    • v.12 no.2
    • /
    • pp.57-62
    • /
    • 2003
  • In this study, a robotic manipulator for harvesting cucumber was developed. The objective of this research was to design and to construct a robotic manipulator specifically tailored to harvest cucumber in the greenhouse. The system was consisted of an integrated end-efffctor, an image processing system and a controlling system. Especially, the image processing system detected the quality of cucumber within each plant in order for the computer to furnish harvest instructions to the manipulator. In all tests of cucumber, the success rate for cucumber harvest was 84% in the greenhouse. End-effector, image processing system and controlling system showed good performance. Based on the results of this research the following recommendations are made for further study. Besides harvesting cucumbers, the oldest leaves, creepers and the youngest small side leaves need to be removed.

A study of MIMO Fuzzy system with a Learning Ability (학습기능을 갖는 MIMO 퍼지시스템에 관한 연구)

  • Park, Jin-Hyun;Bae, Kang-Yul;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.505-513
    • /
    • 2009
  • Z. Cao had proposed NFRM(new fuzzy reasoning method) which infers in detail using relation matrix. In spite of the small inference rules, it shows good performance than mamdani's fuzzy inference method. But the most of fuzzy systems are difficult to make fuzzy inference rules in the case of MIMO system. The past days, We had proposed the MIMO fuzzy inference which had extended a Z. Cao's fuzzy inference to handle MIMO system. But many times and effort needed to determine the relation matrix elements of MIMO fuzzy inference by heuristic and trial and error method in order to improve inference performances. In this paper, we propose a MIMO fuzzy inference method with the learning ability witch is used a gradient descent method in order to improve the performances. Through the computer simulation studies for the inverse kinematics problem of 2-axis robot, we show that proposed inference method using a gradient descent method has good performances.

The Development of Game Simulator for Snowboard (스노우보드 게임 시뮬레이터 개발)

  • Kim, Dong-Jin;Yoon, Pyoung-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.510-516
    • /
    • 2019
  • In this paper, a snowboard simulator that measures the user's motion and makes the user feel physical changes and enjoy actual snowboarding was developed. The speed and direction of the snowboard are determined by the user's center of gravity. The developed simulator is equipped with four springs on the snowboard plate, so that the slope can change according to the change in the user's weight center and be felt directly. The slope due to the change in the center of gravity of the user is measured using a three-axis acceleration sensor. The friction of the slope generated by the rotation of the snowboard is made possible by the user using the BLDC motor, and the rotation of the snowboard is measured using the hole sensor. For rapid data processing of the simulator, two MCUs are used to transfer the measured data to the PC using the acceleration sensor and motor separately. The developed simulator can experience slopes and friction of the slope directly, and wear measured data and HMD to enjoy more realistic snowboarding.