• Title/Summary/Keyword: 3차원 CT

Search Result 508, Processing Time 0.025 seconds

Three Dimensional Reconstruction and Display of CT Images Via Linear Octree (선형 Octree에 의한 CT영상의 3차원 재구성 및 표현)

  • Yoo, Sun-Kook;Kim, Nam-Hyun;Kim, Won-Ky;Kim, Sun-Ho;Park, Sang-Hui
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.6
    • /
    • pp.79-88
    • /
    • 1989
  • In this paper, linear octree is used to reconstruct and to modify the 3-dimensional image from 2-dimensional cross sections provided by computed tomography. Linear octree introduces a considerable data saving of the memory storage required by small computer system. This structure allows the hidden surface removal utilizing the spatial presortedness of hierarchical octree structure and implementation of graphical operations that include viewing transform and shading. An actual human organ is used to illustrate this technique and its implications for theraphy and surgical planning.

  • PDF

The Study on the Implementation of the X-Ray CT System Using the Cone-Beam for the 3D Dynamic Image Acquisition (3D 동영상획득을 위한 Cone-Beam 형 X-Ray CT 시스템 구현에 관한 연구)

  • Jeong, Chan-Woong;Jun, Kyu-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.370-374
    • /
    • 2009
  • In this paper, we presents a new cone beam computerized tomography (CB CT) system for the reconstruction of 3 dimensional dynamic images. The system using cone beam has less the exposure of radioactivity than fan beam, relatively. In the system, the reconstruction 3-D image is reconstructed with the radiation angle of X-ray in the image processing unit and transmitted to the monitor. And in the image processing unit, the Three Pass Shear Matrices, a kind of Rotation-based method, is applied to reconstruct 3D image because it has less transcendental functions than the one-pass shear matrix to decrease a time of calculations for the reconstruction 3-D image in the processor. The new system is able to get 3~5 3-D images a second, reconstruct the 3-D dynamic images in real time.

The Algorithm Improved the Speed for the 3-Dimensional CT Video Composition (3D CT 동영상 구성을 위한 속도 개선 알고리즘)

  • Jeong, Chan-Woong;Park, Jin-Woo;Jun, Kyu-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.141-147
    • /
    • 2009
  • This paper presents a new fast algorithm, rotation-based method (RBM), for the reconstruction of 3 dimensional image for cone beam computerized tomography (CB CT) system. The system used cone beam has less exposure time of radioactivity than fan beam. The Three-Pass Shear Matrices (TPSM) is applied, that has less transcendental functions than the one-pass shear method to decrease a time of calculations in the computer. To evaluate the quality of the 3-D images and the time for the reconstruction of the 3-D images, another 3-D images were reconstructed by the radon transform under the same condition. For the quality of the 3-D images, the images by radon transform was shown little good quality than REM. But for the time for the reconstruction of the 3-D images REM algorithm was 35 times faster than radon transform. This algorithm offered $4{\sim}5$ frames a second. It meant that it will be possible to reconstruct the 3-D dynamic images in real time.

On the development of S/W tools for industrial 3D X-ray computed tomography employing general software (범용 소프트웨어를 사용한 산업용 3차원 X-ray Computed Tomography의 툴 개발)

  • Choi, Hyeong-Seok;Yang, Yoon-Gi
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.768-776
    • /
    • 2019
  • With the deployment of 4-th generation industrial revolution, the computer based manufacturing technologies employing advanced IT technology are much more popular than any other past years. In this research, some novel S/W technologies related to the industrial X-ray CT (computed tomography) for the inspection of the industrial parts are introduced. First, newly constructed industrial X-ray CT is presented in this paper, where some basic principles and functions of the CT are described. Then some research platforms are developed to generate more advanced functionalities of the industrial CT. Especially, the data transform from CT to general S/W such as Matlab is conducted. And based on this techniques, some supplementary S/W platform such as GUI (graphical user interface) of the CT S/W and some 3D voxel based image processing technologies can be developed in this paper. The industrial CT is one of the rare research items and it's values can be much more enhanced when it is used with advanced IT technologies.

3D Reconstructed Image of Neck Mass to Improve Patient's Understanding (경부 종물 환자의 이해도 개선을 위한 3차원 재건 영상의 활용)

  • Yoo, Young-Sam
    • Korean Journal of Head & Neck Oncology
    • /
    • v.26 no.2
    • /
    • pp.193-197
    • /
    • 2010
  • Objectives : Patients with neck tumor and their family need every information about the disease. Especially, the size and location are confusing with verbal information. With the aid of CT, the problem had some answer, but it needs some medical education. We would like to know the usefullness of 3D reconstructed images in patient education about the disease. Material and Methods : Neck CT data were collected from 10 patients with various neck tumors and converted to 3D reconstructed images. Understanding of the patients about the size and location of tumors were rated from questionaires using axial CT images and 3D images. Results : Understanding score about 3D images were greater than that of CT images(p<0.006). Conclusion : 3D reconstructed images of CT could give the patients more real visual information about the disease.

Facial soft tissue measuring analysis of normal occlusion using three-dimensional CT imaging (3차원 CT 영상을 이용한 정상교합자의 안면 연조직 계측 분석)

  • Han, Soo-Yeon;Baik, Hyoung-Seon;Kim, Kee-Deog;Yu, Hyung-Seog
    • The korean journal of orthodontics
    • /
    • v.35 no.6 s.113
    • /
    • pp.409-419
    • /
    • 2005
  • Studies for diagnostic analysis using three-dimensional (3D) CT images are recently in progress and needs for 3D craniofacial analysis are increasing in the fields of orthodontics. It is especially essential to analyze the facial soft tissue after orthodontic treatment and orthognathic surgery. In this study 3D CT images of adults with normal occlusion were taken to analyze the facial soft tissue. Norms were obtained from CT images of adults with normal occlusion (12 males, 11 females) using a computer program named V works 4.0 program. 3D coordinate planes were established using soft tissue Nasion as the reference point and a total of 20 reproducible landmarks of facial soft tissue were obtained using the multiple reconstructive sectional images (axial, sagittal and coronal images) of the V works 4.0 program: soft tissue Nasion, Pronasale, Subnasale, Upper lip center, Lower lip center, soft tissue B, soft tissue Pogonion, soft tissue Menton, Endocanthion (Rt/Lt), Alare lateralis (Rt/Lt), Cheilion (Rt/Lt), soft tissue Gonion (Rt/Lt), Tragus (Rt/Lt), and Zygomatic point (Rt/Lt). According to the established landmarks and measuring method, the 3D CT images of adults with normal occlusion were measured and the normal positional measurements and their Net (${\delta}=\sqrt{{X^2}+{Y^2}+{Z^2}}$) values were obtained using V surgery program, In the linear measurement between landmarks, there was a significant difference between males and females except Na' -Sn and En(Rt)-En(Lt). The normal ranges of Na'-Zy, Na'-Ch and Na'-Go' (facial depth) were obtained, which was difficult to measure by two-dimensional (2D) cephalometric analysis and facial photographs. These data may be used as references for 3D diagnosis and treatment planning for patients with malocclusion and dentofacial deformity.

Rib Segmentation via Biaxial Slicing and 3D Reconstruction (다중 축 슬라이싱 및 3 차원 재구성을 통한 갈비뼈 세그멘테이션)

  • Hyunsung Kim;Gyurin Byun;Seonghyeon Ko;Junghyun Bum;Duc-Tai Le;Hyunseung Choo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.611-614
    • /
    • 2023
  • 갈비뼈 병변 진단 과정은 방사선 전문의가 CT 스캐너를 통해 생성된 2 차원 CT 이미지들을 해석하며 진행된다. 병변의 위치를 파악하고 정확한 진단을 내리기 위해 수백장의 2차원 CT 이미지들이 세밀하게 검토되며 갈비뼈를 분류한다. 본 연구는 이런 노동 집약적 작업의 문제점을 개선시키기 위해 Biaxial Rib Segmentation(BARS)을 제안한다. BARS 는 흉부 CT 볼륨의 관상면과 수평면으로 구성된 2 차원 이미지들을 U-Net 모델에 학습한다. 모델이 산출한 세그멘테이션 마스크들의 조합은 서로 다른 평면의 공간 정보를 보완하며 3 차원 갈비뼈 볼륨을 재건한다. BARS 의 성능은 DSC, Recall, Precision 지표를 사용해 평가하며, DSC 90.29%, Recall 89.74%, Precision 90.72%를 보인다. 향후에는 이를 기반으로 순차적 갈비뼈 레이블링 연구를 진행할 계획이다.

A Study on the Availability of the On-Board Imager(OBI) and Cone-Beam CT(CBCT) in the Verification of Patient Set-up (온보드 영상장치(On-Board Imager) 및 콘빔CT(CBCT)를 이용한 환자 자세 검증의 유용성에 대한 연구)

  • Bak, Jino;Park, Sung-Ho;Park, Suk-Won
    • Radiation Oncology Journal
    • /
    • v.26 no.2
    • /
    • pp.118-125
    • /
    • 2008
  • Purpose: On-line image guided radiation therapy(on-line IGRT) and(kV X-ray images or cone beam CT images) were obtained by an on-board imager(OBI) and cone beam CT(CBCT), respectively. The images were then compared with simulated images to evaluate the patient's setup and correct for deviations. The setup deviations between the simulated images(kV or CBCT images), were computed from 2D/2D match or 3D/3D match programs, respectively. We then investigated the correctness of the calculated deviations. Materials and Methods: After the simulation and treatment planning for the RANDO phantom, the phantom was positioned on the treatment table. The phantom setup process was performed with side wall lasers which standardized treatment setup of the phantom with the simulated images, after the establishment of tolerance limits for laser line thickness. After a known translation or rotation angle was applied to the phantom, the kV X-ray images and CBCT images were obtained. Next, 2D/2D match and 3D/3D match with simulation CT images were taken. Lastly, the results were analyzed for accuracy of positional correction. Results: In the case of the 2D/2D match using kV X-ray and simulation images, a setup correction within $0.06^{\circ}$ for rotation only, 1.8 mm for translation only, and 2.1 mm and $0.3^{\circ}$ for both rotation and translation, respectively, was possible. As for the 3D/3D match using CBCT images, a correction within $0.03^{\circ}$ for rotation only, 0.16 mm for translation only, and 1.5 mm for translation and $0.0^{\circ}$ for rotation, respectively, was possible. Conclusion: The use of OBI or CBCT for the on-line IGRT provides the ability to exactly reproduce the simulated images in the setup of a patient in the treatment room. The fast detection and correction of a patient's positional error is possible in two dimensions via kV X-ray images from OBI and in three dimensions via CBCT with a higher accuracy. Consequently, the on-line IGRT represents a promising and reliable treatment procedure.

A Study on 3d Reconstruction and Simulated Implantation of Human Femur Using Consecutive CT-Images (연속된 CT-Image를 이용한 고관절 3d 형상의 재구성 및 Simulated Implantation System 구축에 관한 연구)

  • 민경준;김중규;최재봉;최귀원
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.155-164
    • /
    • 1999
  • In this paper, the prototype of SIS(Simulated Implantation System) for human femoral head is introduced. SIS is a software which carries on a virtual femoral head replacement surgery including 3d visualization as well as various numeric analyses between a patient's femur and artificial femur through certain stages of the image processing and of the computer graphics. Also, processes required after acquiring consecutive CT-images and projected image of an artificial femur are discussed, and the corresponding results including prototype of SIS are given.

  • PDF

Comparative Analysis of Accuracy between Computerized Tomography and Cephalogram for 3-Dimensional Measurement of Maxillofacial Structure (악안면 3차원 계측시 컴퓨터 단층촬영과 두부 방사선 규격사진의 정확성 비교 분석)

  • Paek, Jong-Su;Song, Jae-Chul;Lee, Hee-Kyung
    • Journal of Yeungnam Medical Science
    • /
    • v.18 no.1
    • /
    • pp.123-137
    • /
    • 2001
  • Background: The purpose of this study is to evaluate the accuracy of measurements obtained from 3-dimensional computerized tomography and 3-dimensional cephalogram constructed by using the frontal and lateral cephalogram of six human dry skulls. Materials and Methods: After CT scans and each cephalograms were taken, 3-dimensional coordinates (X, Y, Z) of landmarks were obtained using computer programs. In this study, the accuracy of both methods were determined by means of 14 linear measurements compare with caliper measurements. Results: The standard deviation of landmarks of 3-dimensional CT and 3-dimensional cephalogram were 0.23 mm, and 0.30 mm in X axis, 0.27 mm and 0.25 mm in Y axis, and 0.27 mm and 0.31 mm in Z axis. In both methods, the standard deviation were less than 0.5 mm in all landmarks, and the most of landmarks showed less than 1 mm in range. Concerning the accuracy, the mean difference between 3-dimensional CT and manual measurements was 0.33 mm, and 1.13 mm between 3-dimensional cephalogram and manual measurements. The distance between RGo and LGo showed the largest difference (2.03 mm). There were highly significant, and large correlation with manual measurements in both methods (p<0.01). Conclusion: It is concluded that closeness of repeated measures to each skulls reveal the precision of both methods. Computerized tomography and cephalogram for 3-dimensional measurement of maxillofacial structure are equivalent in quality to caliper measurements.

  • PDF