• Title/Summary/Keyword: 3차원 CT

Search Result 508, Processing Time 0.024 seconds

3-D CT Imaging of Pathological Bone Changes in a Rat Model of Adjuvant-Induced Arthritis

  • Shim, Kyung-Mi;Kim, Se-Eun;Kang, Seong-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.4
    • /
    • pp.41-46
    • /
    • 2008
  • Computed tomography (CT) is a medical imaging method employing tomography. CT is a 3-Dimensional (3-D) radiographic imaging technique, which is not suited for assessment of inflammation, but can be considered a reference method for assessment of bone damage, due to its direct 3-D visualization of calcified tissue. In this study of pathological joint changes in a rat model of adjuvant-induced arthritis (AIA) and quality analysis of bone destructions were performed by 3-Dimensional computed tomography images. These data demonstrate that the destructive progression of disease in a rat AIA model can be quantified using 3-D CT image analysis, which allows assessment of arthritic disease status and efficacy of experimental therapeutic agents.

  • PDF

A Study on Automated 3-D Reconstruction Based on 2-D CT Image of Lumber Spine (요추의 2차원 CT 영상을 이용한 3차원 형상모델링의 자동화 연구)

  • 김성민;김성재;서성영;탁계례
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.5
    • /
    • pp.581-586
    • /
    • 1999
  • 척추의 생체역학적 해석을 위한 유한요소기법을 이용한 컴퓨터 시뮬레이션은 척추의 손상에 대한 발생원인과 기전을 이해하고 치료의 효과를 예측하는 유용한 수단으로 기대되고 있다. 본 논문에서는 요추의 2차원 CT 영상을 이용하여 유한요소해석을 위한 척추의 3차원 모델링에 소비되는 많은 시간을 줄일 수 있도록 3차원 형상모델을 CT 형상 데이터와 형상변수를 이용, 각각 구현하는 과정을 자동화하여 이를 비교하였다.

  • PDF

Contour based Algorithm for Generating 3D Models of Teeth and Jaw from CT Images (CT 영상에서 치아와 턱의 3차원 모델 생성을 위한 Contour 기반 알고리즘)

  • 최원준;채옥삼
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.619-621
    • /
    • 2003
  • CT, MRI와 같은 의료 영상을 3차원 재구성을 통해 3차원으로 가시화하는 기술은 의료 분야에서 진단과 진료에 많이 활용되고 있다. 이는 의사에게 정확한 진단과 시술에 대한 확신을 환자에게는 시술에 대한 이해와 신뢰를 심어준다. 치아의 경우 치과 진료가 개개의 치아에 이루어진다는 점을 고려하면 개개의 치아가 개별적으로 모델링 되어 3차원 상에 가시화 되어야 한다. Contour 기반 알고리즘은 2차원 단면 데이터로부터 고속 렌더링과 높은 품질의 3차원 모델 생성이 가능하다. 본 논문에서는 CT에서 추출한 치아 contour 데이터로부터 삼각형 패치를 생성하고, 어금니의 분기 문제를 해결하는 3차원 치아 모델 생성을 위한 contour 기반 알고리즘을 제안한다.

  • PDF

Usefulness of Three-Dimensional CT Image in Meningioma Using Contrast Method (조영법을 이용한 뇌수막종에서 3차원 CT영상의 유용성)

  • Lee, Jun-Haeng;Baek, Sung-Eun;Lee, Sang-Bock;Kim, Yong-Wan
    • Journal of the Korean Society of Radiology
    • /
    • v.2 no.1
    • /
    • pp.17-21
    • /
    • 2008
  • Because of the reason that the meningioma is enhanced lately, we started the study to maximally enhance the meningioma. we were to know the relation between meningioma and vessels in the skull and compared 3D CT angiography with the conventional angiography. we got the data from 6 patients performed by both 3D CT angiography and there were 5 cases in sphenoidal ridge and 1 case parasagittal sinus. Injecting the contrast media at 3 ml/sec, 120 ml and then the CT number reached 100, we started the study using the medical system Program(smart prep). The scan parameters were HS-Mode(1.25 mm / 7.5 mm) right after being injected all and reconstructed with 0.5 mm interval. We compared the study with the conventional angiography after reconstructing the images required by using 3D-Med software Program(Rapidia). Seeing the consequences, the maximum enhancing time in the menigioma is about 120~180 seconds after injecting the contrast media and we distinguished the relation between vessels and tumors at the time and 1 case showed us the aneurysm with a tumor clearly at the time too. It was very helpful to the operation that the 3D images required by injecting the contrast media to the patients with meningioma distingushed between tumors and vessels dimensionally.

  • PDF

Quantification of 3D Pore Structure in Glass Bead Using Micro X-ray CT (Micro X-ray CT를 이용한 글라스 비드의 3차원 간극 구조 정량화)

  • Jung, Yeon-Jong;Yun, Tae-Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.83-92
    • /
    • 2011
  • The random and heterogeneous pore structure is a significant factor that dominates physical and mechanical behaviors of soils such as fluid flow and geomechanical responses driven by loading. The characterization method using non-destructive testing such as micro X-ray CT technique which has a high resolution with micrometer unit allows to observe internal structure of soils. However, the application has been limited to qualitatively observe 2D and 3D CT images and to obtain the void ratio at macro-scale although the CT images contain enormous information of materials of interests. In this study, we constructed the 3D particle and pore structures based on sequentially taken 2D images of glass beads and quantitatively defined complex pore structure with void cell and void channel. This approach was enabled by implementing image processing techniques that include coordinate transformation, binarization, Delaunay Triangulation, and Euclidean Distance Transform. It was confirmed that the suggested algorithm allows to quantitatively evaluate the distribution of void cells and their connectivity of heterogeneous pore structures for glass beads.

Quantitative analysis of three dimensional volumetric images in Chest CT (흉부 CT 검사에서 3차원 체적 영상의 정량적 분석)

  • Jang, Hyun-Cheol;Cho, Jae-Hwan;Park, Cheol-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.5
    • /
    • pp.255-260
    • /
    • 2011
  • We wanted to evaluate the usefulness of three-dimensional reconstructive images using computed tomography for rib fracture patients. The reconstruction used in clinical multi planar reformation(MPR), volume rendering technique(VRT), and image data using quantitative methods and qualitative methods were compared. Much more, the artifact shadow was minimized to reconstruct with 3D volumetric image by using an law data in the analysis of the reconstructive image and chest CT scan of the evaluation result fractures of the thoracic patient. And we could know that the fractures of the thoracic determination and three dimension volume image reconstruction time were reduced.

Skeleton Extraction of 3D Coronary Artery for Topological Shape Analysis (3차원 관상동맥의 위상적인 형상분석을 위한 골격 추출)

  • Lee, Jae-Jin;Kim, Jeong-Sik;Choi, Soo-Mi
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11a
    • /
    • pp.700-702
    • /
    • 2005
  • 3차원 관상동맥처럼 위상 구조가 중요한 객체의 형상을 분석하기 위해서는 혈관의 분기점, 극단점, 혈관의 계층적 구조 관계 등의 정보를 함축적으로 표현할 수 있는 골격 추출이 매우 중요하다 본 논문에서는 3차원 CT 혈관조영술(3D CT Angiography)로 촬영된 영상으로부터 관상동맥의 3차원 골격을 추출하는 방법을 개발하였다. 먼저, CT 혈관조영술부터 획득한 슬라이스 이미지로부터 3차원 조작 및 수술 시뮬레이션 등을 위하여 혈관의 3차원 표면에 대한 메쉬 모델을 생성한다. 생성된 메쉬 모델이 임의로 변형된 후에도 자동으로 골격을 쉽게 추출할 수 있도록 메쉬 모델을 복셀화하는 단계를 거친다. 이렇게 얻어진 복셀모델로부터 유클리디언 거리 맵을 구성하여 discrete medial surface (DMS)을 생성하고 최종적으로 골격을 추출하게 된다. 이렇게 추출된 3차원 골격은 관상동맥 수술 시뮬레이션 등에서 다양한 형상 분석에 유용하게 사용될 수 있다.

  • PDF

Indirect Volume Rendering of Hepatobiliary System from CT and MRI Images (CT와 MRI 영상을 이용한 간담도계 간접볼륨렌더링)

  • Jin, Gye-Hwan;Lee, Tae-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.1 no.2
    • /
    • pp.23-30
    • /
    • 2007
  • This paper presents a method of generating 3-dimensional images by preprocessing 2-dimensional abdominal images obtained using CT (computed tomography) and MRI (magnetic resonance imaging) through segmentation, threshold technique, etc. and apply the method to virtual endoscopy. Three-dimensional images were visualized using indirect volume rendering, which can render at high speed using a general-purpose graphic accelerator used in personal computers. The algorithm used in the rendering is Marching Cubes, which has only a small volume of calculation. In addition, we suggested a method of producing 3-dimensional images in VRML (virtual reality modeling language) running on the Web browser without a workstation or an exclusive program. The number of nodes, the number of triangles and the size of a 3-dimensional image file from CT were 85,367, 174,150 and 10,124, respectively, and those from MRI were 34,029, 67,824 and 3,804, respectively.

  • PDF

A proposal of landmarks for craniofacial analysis using three-dimensional CT imaging (3차원 CT 영상을 이용한 두개악안면 분석을 위한 계측점의 제안)

  • Chang, Hye-Sook;Baik, Hyoung-Seon
    • The korean journal of orthodontics
    • /
    • v.32 no.5 s.94
    • /
    • pp.313-325
    • /
    • 2002
  • Three-dimensional CT imaging is efficient in examining specific structures in the craniofacial area by reproducing actual measurements through minimization of errors from patient movement and image magnification. Due to the rapid development of digital image technology and the expansion of treatment range a need for developing three -dimensional analysis has become urgent. Therefore the purpose of this study was to evaluate the percentage of error and magnification of three-dimensional CT using a dried skull and Vworks $program^{TM}$ (Cybermed Inc., Seoul, Korea) and also to obtain landmarks that are easy to designate and reproduce in three-dimensional images using the Vmorph-proto $program^{TM}$ (Cybermed Inc., Seoul, Korea). The following conclusions were obtained, 1. In the comparison of actual measurements from the dried skull and the three-dimensional image obtained from the Vworks program, the mean error was 0.99mm and the magnification was 1.04%. 2. Clinically useful hard tissue landmarks from three-dimensional images were Supraorbitale, Lateral orbital margin, Infraorbitale, Nasion, ANS, A point, Zygomaticomaxilla, Upper incisor, Lower incisor, B point, pogonion, Menton, PNS, Condylar inner margin, Condylar outer margin, Porion, Condylion, Gonionl, Gonion2, Gonion3, Sigmoid notch and Basion. 3. Clinically useful soft tissue landmarks from three-dimensional images were Endocanthion, Exocanthion, Soft tissue Nasion, Pronasale, Alare lateralis, Upper nostril point, Lower nostril point, Subnasale, Upper lip point, Cheilion, Stomion, Lower lip center, Soft tissue B, Pogonion, Menton and Preaurale. The Vworks program can be considered a clinically efficient tool to produce and measure three-dimensional images. Most of the hard and soft tissue landmarks proposed above are anatomically important points which are also easily reproducible and designated. These landmarks can be beneficial in three-dimensional diagnosis and the prediction of changes before and after surgery.

Development and Performance Evaluation of an Ultra-Compact CT with Auto Calibration of Detector Center Axis (검출기 중심축을 자동 보정하는 초소형 CT 개발 및 성능평가)

  • Byeong-Woo Kwak;Keun-Ho Rew
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.651-662
    • /
    • 2023
  • In this study, we designed and fabricated an ultra-compact CT that automatically calibrates the detector's center axis and verified its performance. The three-dimensional reconstruction performance was evaluated using 3D CAD data and X-ray data acquired by manually calibrating the center axis of the CT detector. The results showed that tilting the center axis by more than 0.25° causes circle break phenomenon, which rapidly degrades the quality of the 3D reconstructed image. By applying the automatic calibration device of a detector center axis, the 3D reconstruction performance was enhanced by calibrating the detector center axis to match the specimen rotation axis.