• Title/Summary/Keyword: 3차원 지표침하

Search Result 32, Processing Time 0.024 seconds

Numerical simulation for surface settlement considering face vibration of TBM tunnelling in mixed-face condition (복합지반에서 TBM 굴진 진동을 고려한 지표침하에 대한 수치모델링)

  • Kwak, Chang-Won;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.333-339
    • /
    • 2015
  • In this paper, the surface settlement resulted from the shallow TBM tunnelling has been numerically simulated. TBM tunnelling is especially used in urban area to avoid serious vibration and noise caused by explosion in NATM. Surface settlement is one of the most important problems encountered in all tunnelling and critical in urban areas. In this study, face vibration of TBM excavation is considered to estimate surface settlement trend according to TBM extrusion. The dynamic excavation forces are calculated by total torque on the TBM cutterhead in mixed-face of soil and weathered rock condition with shallow depth. A 3-dimensional FDM code is employed to simulate TBM tunnelling and mechanical-dynamic coupling analysis is performed. The 3D numerical analysis results showed that dynamic settlement histories and trend of surface settlement successfully. The maximum settlement occurred at the excavation point located at 2.5D behind the face, and the effect of face vibration on the surface settlement was verified in this study.

A study on key factors of ground surface settlement due to shield TBM excavation using 3-dimension numerical analysis (3차원 수치해석을 이용한 Shield TBM 굴진시 지표침하 주요 영향요소 분석)

  • Jun, Gy-Chan;Kim, Dong-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.305-317
    • /
    • 2015
  • This paper is to perform 3-dimensional numerical analysis considering face pressure, backfill pressure, excavation length, soil model and element size for selecting key factors of ground surface settlement due to shield TBM advancement. According to the numerical analysis results, backfill pressure and soil model are governing factors inducing ground surface settlement. To complement this study, the ground conditions and characteristics of the boring machine will be considered using numerical analysis.

Characteristics of Subsidence above a Shallow Tunnel Excavated in Weathered Rock Mass (풍화암반 저심도 터널 굴착 중 발생한 지표침하의 특성)

  • Kim, Chee-Hwan
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.337-346
    • /
    • 2013
  • The characteristics of subsidence above a shallow tunnel excavated in weathered rock mass is analyzed. The tunnel is excavated minimum about 11m beneath some buildings and the width of the tunnel is 11m, too. Subsidence pins are installed at 23 locations on surface along the tunnel, 180m long, adjacent to the buildings. Subsidences are measured for about 2 years and they are optimized to analyze three dimensional deformed ground surface, trough width parameter K and sectional volume loss of unit tunnel length Vs of the surface deformation profile.

Suggestion on Reasonable Boundary Conditions for Modeling a Tunnel Shield by Displacement Control Method (변위 제어를 통한 터널 쉴드 모델링의 적정 경계조건 제안)

  • Kim, Jeong-Soo;Kim, Moon-Kym
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.512-515
    • /
    • 2011
  • 터널 해석은 주로 지표침하와 터널 라이닝 내 단면력 산정에 초점이 맞춰지며 이는 시공단계를 고려한 3차원 수치해석 모델을 이용해 결정할 수 있다. 수치해석 시 shield는 응력 제어, shell element로 모델링하는 방법 등으로 모사될 수 있다. 한편 변위 제어를 통한 쉴드 모사는 shield를 적절한 경계조건으로 처리함으로서, 다른 shield 모사 방법에 비해 모델링 작업을 간소화하고 해석의 효율성을 높일 수 있다. 본 연구에서는 변위 제어에 의한 shield 모사를 위한 적정 경계조건을 제안한다. 이를 위해 시공단계가 고려된 유한요소해석을 사용하여, 쉴드 및 굴착면에서의 경계조건 변화와 이에 따른 지표침하 관측 수행하였다. 제안된 shield 변위 제어로부터 얻어진 해석결과를 이론적인 해와 비교함으로서, 제시된 shield 모델링 방법의 적정성과 지반 거동 변화를 평가하고자 한다. 해석 결과는 지반 모델의 지표침하를 기준으로 관찰되었으며, 변위제어에 의한 결과와 요소에 의한 모델링 결과가 유사하게 얻어짐을 보여준다. 또한 변위제어의 쉴드 모사에서 회전 구속보다 변위 구속 조건에 지배적으로 영향을 받음을 확인하였다.

  • PDF

Study on the 3 dimensional numerical analysis method for shield TBM tunnel considering key factors (주요 영향요소를 고려한 쉴드TBM 터널 3차원 수치해석기법 연구)

  • Jun, Gy-chan;Kim, Dong-hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.513-525
    • /
    • 2018
  • A 3 dimensional numerical analysis for shield TBM tunnel should take into account various characteristics of the shield TBM excavation, such as gap, tail void, segment installation, and backfill injection. However, analysis method considering excavation characteristics are generally mixed with various method, resulting in concern of consistency and reliability degradation of the analytical results. In this paper, a parametric study is carried out by using actually measured ground settlement data on various methods that can be used for 3 dimensional numerical analysis of shield TBM tunneling. As a result, we have analyzed and arranged an analytical method to predict similarly the behavior of ground settlement and tunnel face pressure at the design stage. Skin plate pressure, backfill pressure and soil model have been identified as the most significant influences on the ground settlement. The grout pressure model is considered to be applicable when there is no volume loss information on the excavated ground, such as seabed tunnels, or when it is important to identify the behavior around a tunnel, such as surface settlement as well as face pressure. And it is considered that designers can use these guidelines as a base material to perform a reasonable 3 dimensional numerical analysis that reflects the ground conditions and the features of the shield TBM tunneling.

Damage Assessment of Adjacent Structures due to Tunnel Excavation in Urban Areas (II) - Focused on the Variations of Building Stiffness Ratio - (도심지 터널 굴착에 따른 인접구조물의 손상평가에 관한 연구 (II) - 지상 건물의 강성비 변화를 중심으로 -)

  • 김창용;배규진;문현구;박치현;오명렬
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.81-98
    • /
    • 1999
  • The influence of tunnelling on buildings has become an important issue in urban areas. The problem is an interactive one: not only do tunnelling settlements affect existing structures, but existing structures affect tunnel-induced soil movements. In order to examine the constraint of surface settlement and the degradation of building damage parameters, 3-dimensional elasto-plastic finite element analyses are peformed. Also, in this paper, the results of the parametric studies for the variations of the damage parameters due to the ground movements are presented by utilizing 2-dimensional elasto-plastic finite element models, totally 162 models. The width of a structure, its bending and axial stiffness, its position relative to the tunnel and the depth of tunnel are considered. The interaction is shown by reference to commonly-used building damage parameters, namely angular distortion, deflection ratio, maximum building settlements, maximum differential settlements and horizontal strain. By introducing relative stiffness parameters which combine the bending and axial stiffness of the structure with its width and stiffness of soil, design curves are established. These give a guide as to the likely modification of the greenfield settlement trough caused by a surface structure. They can be used to give initial estimates of likely building damage.

  • PDF

Tunnel Convergence and Crown Settlement Using 3D Laser Scanning (3 차원 레이저 스캐닝을 이용한 터널의 천단 및 내공 변위 관측)

  • Lee, Jae-One;Yun, Bu-Yeol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.2 s.40
    • /
    • pp.67-75
    • /
    • 2007
  • There are a number of risks in constructing tunnel-structures. Therefore, the precise and rapid observation about inside deformation of the tunnel is required to prevent these risks from occurring and to secure safety. But currently, the real situation is that the crown settlement, cavity deformation and ground surface settlement rely upon the universal mensuration which uses total station or various kinds of measuring instruments. Recently, according to improvement and progress of measuring technology, three-dimensional laser scanning is used as the method to provide data for maintaining structures. It solves the reliability problem of measuring method for the transformational volume of existing structures, provides data that enables to judge visually by three-dimensioning the shape change of structures and makes it possible to deliberate speedy countermeasure. And it can also be efficiently used in the structure maintenance and field measurement.

  • PDF

The effect of formation of spherical underground cavity on ground surface settlement : Numerical analysis using 3D DEM (구형지하공동 형성이 지표침하에 미치는 영향에 대한 3차원 개별요소해석)

  • Lee, Sang-Hyun;Lee, Hang-Lo;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.129-142
    • /
    • 2016
  • The underground cavity known as one of the reasons of ground surface settlement is a discontinuous character. Therefore, it is limited to analyze with continuum analysis. In this research, The spherical underground cavity affecting the ground surface settlement is studied with Discrete Element Method. Ground properties, depth and diameter of the spherical underground cavity are chosen as factors of the spherical underground cavity and the effect of the each factor variations on the ground surface settlement is analyzed. Relative depth to the diameter of the spherical underground cavity is also studied. The result of the research suggests the basis of underground cavity collapse prediction and standard of support.

Risk Of Buildings Damage Due To Subsidence During Tunnelling Under The Buildings In Sand-Gravel Layer (빌딩하부 모래자갈층에서 터널시공 중 발생한 지표침하에 의한 빌딩의 손상)

  • Kim, Cheehwan
    • Tunnel and Underground Space
    • /
    • v.25 no.4
    • /
    • pp.383-396
    • /
    • 2015
  • It is analyzed the risk of building damage due to ground surface subsidence occurred during constructing a tunnel below buildings in sand-gravel layer. The overburden and the thickness of sand-gravel layer is about 20m and the width and the height of the tunnel are 12m and 8.6m, respectively. The tunnel is pre-reinforced by umbrella method with three rows of long steel pipes and grouting. Surface subsidence is measured at 36 points surrounding buildings and measured data are used to calculate optimized three dimensional subsidence surface. Depending on the building location, deflection ratio and horizontal strain are calculated to evaluate the risk of building damage. No damage occurs at the buildings because of both the small deflection ratios involved 1~4mm subsidence and compressive horizontal strains.

A Study on the Volumetric Expansion Ratio of Rock Mass for Subsidence Behavior Analysis II (지반침하 거동특성 분석을 위한 암반의 부피팽창률에 관한 연구 II)

  • Lee, Seung-Joong;Jung, Yong-Bok;Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.436-446
    • /
    • 2008
  • The volumetric expansion ratio of rock mass on the subsidence occurrence area can explain why the depth of the surface subsidence is lower than the height of an opening; it is because the empty space of the gangway is filled with the broken rock. But, until now, when the surface subsidence mechanism is studied without consideration of the volumetric expansion ratio, it is usually overlooked that the amount of subsidence occurrence can be overestimated. Therefore, in this study, the authors researched the subsidence occurrence mechanism with a new theoretical approaching method. The volumetric expansion ratio obtained from this method has been applied to the numerical simulations. The authors adopted the UDEC(Universal Distinct Element Code) for their discontinuum numerical analysis, because this program has an advantage for analyzing the behavior of rock discontinuities.