• Title/Summary/Keyword: 3차원 정밀측정

Search Result 351, Processing Time 0.028 seconds

Accuracy Analysis of ADCP Stationary Discharge Measurement for Unmeasured Regions (ADCP 정지법 측정 시 미계측 영역의 유량 산정 정확도 분석)

  • Kim, Jongmin;Kim, Seojun;Son, Geunsoo;Kim, Dongsu
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.7
    • /
    • pp.553-566
    • /
    • 2015
  • Acoustic Doppler Current Profilers(ADCPs) have capability to concurrently capitalize three-dimensional velocity vector and bathymetry with highly efficient and rapid manner, and thereby enabling ADCPs to document the hydrodynamic and morphologic data in very high spatial and temporal resolution better than other contemporary instruments. However, ADCPs are also limited in terms of the inevitable unmeasured regions near bottom, surface, and edges of a given cross-section. The velocity in those unmeasured regions are usually extrapolated or assumed for calculating flow discharge, which definitely affects the accuracy in the discharge assessment. This study aimed at scrutinizing a conventional extrapolation method(i.e., the 1/6 power law) for estimating the unmeasured regions to figure out the accuracy in ADCP discharge measurements. For the comparative analysis, we collected spatially dense velocity data using ADV as well as stationary ADCP in a real-scale straight river channel, and applied the 1/6 power law for testing its applicability in conjunction with the logarithmic law which is another representative velocity law. As results, the logarithmic law fitted better with actual velocity measurement than the 1/6 power law. In particular, the 1/6 power law showed a tendency to underestimate the velocity in the near surface region and overestimate in the near bottom region. This finding indicated that the 1/6 power law could be unsatisfactory to follow actual flow regime, thus that resulted discharge estimates in both unmeasured top and bottom region can give rise to discharge bias. Therefore, the logarithmic law should be considered as an alternative especially for the stationary ADCP discharge measurement. In addition, it was found that ADCP should be operated in at least more than 0.6 m of water depth in the left and right edges for better estimate edge discharges. In the future, similar comparative analysis might be required for the moving boat ADCP discharge measurement method, which has been more widely used in the field.

Sptimum Design of a Uniform Magnetic Field Exposure System for a Small-Sized Animal Study (자계 균일 공간 확보를 위한 소동물 실험용 5G급 자계 발생장치의 최적 설계)

  • 김상범;추장희;이동일;명성호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1194-1203
    • /
    • 2000
  • A magnetic field exposure system that generates 60 Hz magnetic fields from 1 mG to 5 G was designed and constructed for small-sized animal study. In order to investigate as many animals as possible at one series of test, uniform magnetic fields are required at wide living area of the animals. In this article, a cubic shaped field exposure system with three animal living floors was designed, which offers about 50 seating capacity. For calculation of magnetic fields inside the cage, a three-dimensional calculation program was developed. Using this, optimum electric current ratio of inner coil to outer coil and position of each coil were determined. Meanwhile, inductance of the exposure system was calculated for the design of power supply. The field measurement results of the manufactured exposure system showed that the difference between maximum and minimum magnetic field at the testing floors was less than 3%, which strongly demonstrated the field exposure system was good for small sized animal study.

  • PDF

Cause of Rockfall at Natural Monument Pohang Daljeon-ri Columnar Joint (천연기념물 포항 달전리 주상절리의 낙석 발생원인)

  • Kim, Jae Hwan;Kong, Dal-Yong
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.497-510
    • /
    • 2022
  • Monthly monitoring, 3D scan survey, and electrical resistivity survey were conducted from January 2018 to August 2022 to identify the cause of rockfall occurring in Daljeon-ri Columnar Joint (Natural Monument No. 415), Pohang. A total of 3,231 rocks fell from the columnar joint over the past 5 years, and 1,521 (47%) of the falling rocks were below 20 cm in length, 978 (30.3%) of 20-30 cm, and 732 (22.7%) of rocks over 30 cm. While the number of rockfalls by year has decreased since 2018, the frequency of rockfalls bigger than 30 cm tends to increase. Large-scale rockfalls occurred mainly during the thawing season (March-April) and the rainy season (June-July), and the analysis of the relationship between cumulative rainfall and rockfall occurrence showed that cumulative rainfall for 3 to 4 days is also closely related to the occurrence of rockfall. Smectite and illite, which are expansible clay minerals, were observed in XRD analysis of the slope material (filling minerals) in the columnar joint, and the presence of a fault fracture zone was confirmed in the electrical resistivity survey. In addition, the confirmed fault fracture zone and the maximum erosion point analyzed through 3D precision measurement coincided with the main rockfall occurrence point observed by the BTC-6PXD camera. Therefore, the main cause of rockfall at Daljeon-ri columnar joint in Pohang is a combination of internal factors (development of fault fracture zones and joints, weathering of rocks, presence of expansive clay minerals) and external factors (precipitation, rapid thawing phenomenon), resulting in large-scale rockfall. Meanwhile, it was also confirmed that the Pohang-Gyeongju earthquake, which was continuously raised, was not the main cause.

Accuracy and Consistency of Three-Dimensional Motion Analysis System (3차원 동작분석 시스템의 정밀도와 측정 일관성)

  • Park, Young-Hoon;Youm, Chang-Hong;Seo, Kook-Woong
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.83-92
    • /
    • 2005
  • Computer-assisted motional analysis is a popular method in biomechanical studies. Validation of the specific system and its measurement are fundamental to its application in the areas. Because the accuracy and consistency of a particular system provide the researchers with critical information to assist in making judgements regarding the degree to which inferences can be drawn from measurement data. The purpose of this study was to assess the accuracy and consistency of the Kwon3D motion analysis system. Validation parameters were five lengths from eight landmarkers in combination with the DLT reconstruction error values, digitizing monitor resolutions, and numbers of control points. With the best setting, Kwon3D's estimations of 260cm, 200cm, 140cm, 100cm, and 20cm were $260.33{\pm}.688cm$, $199.98{\pm}.625cm$, $139.89{\pm}.537cm$, $99.75{\pm}.466cm$, $20.08{\pm}.114$, respectively. There was no significant DLT error value difference between two monitor resolutions, but 0.27cm significant difference in 260cm estimation. There were significant differences in 260cm and 200cm estimations between with 33-control-point DLT error and with 17-control-point DLT error, but no in 140cm, 100cm, and 20cm estimations. Test-retest results showed that Kwon3D measurements were highly consistent with reliability coefficients alpha of .9263 and above.

Uniformity of Temperature in Cold Storage Using CFD Simulation (CFD 시뮬레이션을 이용한 농산물 저온저장고내의 온도분포 균일화 연구)

  • Jeong, Hoon;Kwon, Jin-Kyung;Yun, Hong-Sun;Lee, Won-Ok;Kim, Young-Keun;Lee, Hyun-Dong
    • Food Science and Preservation
    • /
    • v.17 no.1
    • /
    • pp.16-22
    • /
    • 2010
  • To maintain the storage quality of agricultural products, temperature uniformity during cold storage, which is affected by fan flow rate and product arrangement, is important. We simulated and validated a CFD (Computational Fluid Dynamics) model that can predict both airflow and temperature distribution in a cold storage environment. Computations were based on a commercial code (FLUENT 6.2) and two turbulence models. The standard k-$\varepsilon$ model and the Reynolds stress model (RSM) were chosen to improve the accuracy of CFD prediction. To obtain comparative data, the temperature distribution and velocity vector profiles were measured in a full-scale cold storage facility and in a 1/5 scale model. The agricultural products domain in cold storage was modeled as porous for economical computation. The RSM prediction showed good agreement with experimental data. In addition, temperature distribution was simulated in the cold storage rooms to estimate the uniformity of temperature distribution using the validated model.

Study on the Measurement System of Behavior of a Slender Structure using an Underwater Camera which is applied in DOEB (심해공학수조에 적용되는 수중카메라를 이용한 세장체의 연속 거동 측정방법에 관한 연구)

  • Jung, Dong-Ho;Kwon, Yong-Ju;Park, Byeong-Won;Jung, Jae-Hwan;Choi, Jong-Su;Cho, Seok-Kyu;Sung, Hong-Gun
    • Journal of Navigation and Port Research
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • This study covers the selection of systems measuring the behaviour of the slender structure in the underwater environment and its performance assessment. From a comparison of an instrumentation system that can measure the continuous behaviour along the entire length of the slender structure, the underwater camera system is finally selected as the most appropriate semi-permanent measurement system for Deep-sea Ocean Engineering Basin of KRISO. An experiment on the rigid pipes for a basic performance evaluation of the underwater camera is conducted in this study. The motion of a top excited rigid pipe is measured with the utilization of the underwater camera system. The performance of the underwater camera is evaluated by comparing the movement of a pipe measured by the underwater camera with the measured input signals. Through the top excitation experiment for the slender structure, the real-time three-dimensional measurement of the underwater camera system is qualitatively evaluated in this case. The developed underwater camera system can apply to the system to measure dynamic behaviour of a slender structure and mooring line in Deep Ocean Engineering Basin.

Experimental Validation of Isogeometric Optimal Design (아이소-지오메트릭 형상 최적설계의 실험적 검증)

  • Choi, Myung-Jin;Yoon, Min-Ho;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.345-352
    • /
    • 2014
  • In this paper, the CAD data for the optimal shape design obtained by isogeometric shape optimization is directly used to fabricate the specimen by using 3D printer for the experimental validation. In a conventional finite element method, the geometric approximation inherent in the mesh leads to the accuracy issue in response analysis and design sensitivity analysis. Furthermore, in the finite element based shape optimization, subsequent communication with CAD description is required in the design optimization process, which results in the loss of optimal design information during the communication. Isogeometric analysis method employs the same NURBS basis functions and control points used in CAD systems, which enables to use exact geometrical properties like normal vector and curvature information in the response analysis and design sensitivity analysis procedure. Also, it vastly simplify the design modification of complex geometries without communicating with the CAD description of geometry during design optimization process. Therefore, the information of optimal design and material volume is exactly reflected to fabricate the specimen for experimental validation. Through the design optimization examples of elasticity problem, it is experimentally shown that the optimal design has higher stiffness than the initial design. Also, the experimental results match very well with the numerical results. Using a non-contact optical 3D deformation measuring system for strain distribution, it is shown that the stress concentration is significantly alleviated in the optimal design compared with the initial design.

A 15b 50MS/s CMOS Pipeline A/D Converter Based on Digital Code-Error Calibration (디지털 코드 오차 보정 기법을 사용한 15비트 50MS/s CMOS 파이프라인 A/D 변환기)

  • Yoo, Pil-Seon;Lee, Kyung-Hoon;Yoon, Kun-Yong;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.5
    • /
    • pp.1-11
    • /
    • 2008
  • This work proposes a 15b 50MS/s CMOS pipeline ADC based on digital code-error calibration. The proposed ADC adopts a four-stage pipeline architecture to minimize power consumption and die area and employs a digital calibration technique in the front-end stage MDAC without any modification of critical analog circuits. The front-end MDAC code errors due to device mismatch are measured by un-calibrated back-end three stages and stored in memory. During normal conversion, the stored code errors are recalled for code-error calibration in the digital domain. The signal insensitive 3-D fully symmetric layout technique in three MDACs is employed to achieve a high matching accuracy and to measure the mismatch error of the front-end stage more exactly. The prototype ADC in a 0.18um CMOS process demonstrates a measured DNL and INL within 0.78LSB and 3.28LSB. The ADC, with an active die area of $4.2mm^2$, shows a maximum SNDR and SFDR of 67.2dB and 79.5dB, respectively, and a power consumption of 225mW at 2.5V and 50MS/s.

Review of water level-discharge relationship applicability using a numerical model (수치모형을 이용한 수위-방류량 관계 적용성 검토)

  • Joo, Sung sik;Kim, Beak min;Koo, Ja hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.332-332
    • /
    • 2016
  • 수공구조물 설계시 hardware와 software의 발달로 수리계산과 수치해석의 오차율이 감소함에 따라 수치해석을 이용하는 빈도가 높아지고, 신뢰도가 향상되고 있는 추세에 있다. 그러나 댐 설계에 있어 수위별 방유량 관계 검토시 수치해석값은 각 수위에 해당하는 몇 개의 유량값을 대응시켜 경향만 비교하고 수리계산 결과를 설계에 반영해 왔다. 이러한 방법은 여수로 주변에 인접구조물이 없고, 여수로 각 수문별 균등한 유량이 방류될 경우 문제가 되지 않지만, 여수로 직상류 지형에 만곡부나 지형적 특성이 여수로 방류에 영향을 미치거나, 취수탑 등 여수로에 인접한 수리구조물이 설치되어 접근수로에서 복잡한 유동을 형성하는 경우 각 문비마다 방류량의 분배율은 달라질 수밖에 없고, 수리계산 결과를 일괄 반영하기에는 오차가 증가할 수밖에 없다. 이에 본 연구에서는 댐 운영시 중요한 인자 중 하나인 수위-방류량 관계에 대하여 수치모형을 이용한 정밀한 분석을 통하여 댐 여수로 운영시 오차율을 저감시키고, 적용성을 향상시키는 방안을 검토하였다. 첫째, 수위별 방류량 관계 검토시 여수로 상류에서 일정한 시간에 따라 선형적으로 수위가 증가하도록 경계조건을 설정한 후 3차원 수치해석 모형의 Output data를 단위시간에 따라 수위와 방류량이 산정되도록 하고, 기존 검토 방식대로 각 수위별 모형을 steady 상태로 수행하여 비교분석하였다. 수리계산과 기존 방식, 본 연구에서 제시한 방법에 대한 오차율 검토 결과 오차는 3 % 이내로 검토되었다. 둘째, 수치해석을 이용하여 수위별 방류량 산정시 접근유속에 대한 영향을 받게 되므로 수리계산시 에너지 경사를 이용하여 수위값을 반영하지만, 수치해석을 이용하여 수위별 방류량 산정시 경계조건을 부여한 수위값을 반영하거나, 임의의 지점에서의 수위값을 반영하는 경우 등 일괄적이지 않은 수위값을 반영하여 오차율이 증가하는 경향이 있다. 따라서, 본 연구에서는 여수로 지점별 전수두를 측정하여 방류량 값을 산정하여 비교하였다.

  • PDF

Development of an anisotropic spatial interpolation method for velocity in meandering river channel (비등방성을 고려한 사행하천의 유속 공간보간기법 개발)

  • You, Hojun;Kim, Dongsu
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.7
    • /
    • pp.455-465
    • /
    • 2017
  • Understanding of the two-dimensional velocity field is crucial in terms of analyzing various hydrodynamic and fluvial processes in the riverine environments. Until recently, many numerical models have played major roles of providing such velocity field instead of in-situ flow measurements, because there were limitations in instruments and methodologies suitable for efficiently measuring in the broad range of river reaches. In the last decades, however, the advent of modernized instrumentations started to revolutionize the flow measurements. Among others, acoustic Doppler current profilers (ADCPs) became very promising especially for accurately assessing streamflow discharge, and they are also able to provide the detailed velocity field very efficiently. Thus it became possible to capture the velocity field only with field observations. Since most of ADCPs measurements have been mostly conducted in the cross-sectional lines despite their capabilities, it is still required to apply appropriate interpolation methods to obtain dense velocity field as likely as results from numerical simulations. However, anisotropic nature of the meandering river channel could have brought in the difficulties for applying simple spatial interpolation methods for handling dynamic flow velocity vector, since the flow direction continuously changes over the curvature of the channel shape. Without considering anisotropic characteristics in terms of the meandering, therefore, conventional interpolation methods such as IDW and Kriging possibly lead to erroneous results, when they dealt with velocity vectors in the meandering channel. Based on the consecutive ADCP cross-sectional measurements in the meandering river channel. For this purpose, the geographic coordinate with the measured ADCP velocity was converted from the conventional Cartesian coordinate (x, y) to a curvilinear coordinate (s, n). The results from application of A-VIM showed significant improvement in accuracy as much as 41.5% in RMSE.