• Title/Summary/Keyword: 3차원 전기비저항 역산

Search Result 57, Processing Time 0.027 seconds

3-D Geological Structure Interpretation by the Integrated Analysis of Magnetotelluric and Gravity Model at Hwasan Caldera (자기지전류 및 중력 모델의 복합해석을 통한 화산칼데라 지역의 3차원 지질구조 해석)

  • Park, Gye-Soon;Lee, Chun-Ki;Yang, Jun-Mo;Lee, Heui-Soon;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.548-559
    • /
    • 2011
  • 3-D Multi-geophysical surveys were carried out around the Hwasan caldera at the Euisung Sub-basin. To overcome the limitations of resolutions in previous studies, dense gravity data and magnetotelluric (MT) data were obtained and analyzed. In this study, the independent inversion models from gravity and MT data were integrated using correlation and classification approaches for 3-D imaging of the geologic structures. A Structure Index (SI) method was proposed and applied to the integration and classification analyses. This method consists of Type Angle (TA) and Type Intensity (TI) values, which are estimated by the spatial correlation and abnormality of the physical properties. The SI method allowed the classification analysis to be effectively performed. Major findings are as follows: 1) pyroclastic rocks around the central area of the Hwasan caldera with lower density and resistivity than those of neighboring regions extended to a depth of around 1 km, 2) intrusive igneous rocks with high resistivity and density were imaged around the ring fault boundary, and 3) a basement structure with low resistivity and high density, at a depth of 3-5 km, was inferred by the SI analysis.

A study on the Correlation Between the Result of Electrical Resistivity Survey and the Rock Mass Classification Values Determined by the Tunnel Face Mapping (전기비저항탐사결과와 터널막장 암반분류의 상관성 검토)

  • Choi, Jai-Hoa;Jo, Churl-Hyun;Ryu, Dong-Woo;Kim, Hoon;Oh, Byung-Sam;Kang, Moon-Gu;Suh, Baek-Soo
    • Tunnel and Underground Space
    • /
    • v.13 no.4
    • /
    • pp.279-286
    • /
    • 2003
  • Many trials to set up the correlation between the rock mass classification and the earth resistivity have been carried out to design tunnel support type based on the interpreted electrical resistivity acquired by surface electrical survey. But it is hard to find reports on the comparison of the real rock support type determined during the excavation with the electrical resistivity by the inversion of the survey data acquired before the tunneling. In this study, the rock mass classification based on the face mapping data and the resistivity inversion data are investigated to see if it is possible to design reliably the rock support type based on the surface electrical survey. To get the quantitative correlation, rock engineering indices such as RCR(rock condition rating), N(Rock mass number), Q-system and RMR(rock mass rating) are calculated. Since resistivity data has low resolution, Kriging method as a post processing technique which minimizes the estimated variance is used to improve resolution. The result of correlation analysis shows that the 2D electrical resistivity survey is appropriate to see the general trend of the geology in the sense of rock type, though there might be some local area where these two factors do not coincide. But the correlation between the result of 3D survey and the rock mass classification turns out to be very high, and then 3D electrical resistivity survey can make it possible to set up more reliable rock support type.

Urban archaeological investigations using surface 3D Ground Penetrating Radar and Electrical Resistivity Tomography methods (3차원 지표레이다와 전기비저항 탐사를 이용한 도심지 유적 조사)

  • Papadopoulos, Nikos;Sarris, Apostolos;Yi, Myeong-Jong;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.56-68
    • /
    • 2009
  • Ongoing and extensive urbanisation, which is frequently accompanied with careless construction works, may threaten important archaeological structures that are still buried in the urban areas. Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) methods are most promising alternatives for resolving buried archaeological structures in urban territories. In this work, three case studies are presented, each of which involves an integrated geophysical survey employing the surface three-dimensional (3D) ERT and GPR techniques, in order to archaeologically characterise the investigated areas. The test field sites are located at the historical centres of two of the most populated cities of the island of Crete, in Greece. The ERT and GPR data were collected along a dense network of parallel profiles. The subsurface resistivity structure was reconstructed by processing the apparent resistivity data with a 3D inversion algorithm. The GPR sections were processed with a systematic way, applying specific filters to the data in order to enhance their information content. Finally, horizontal depth slices representing the 3D variation of the physical properties were created. The GPR and ERT images significantly contributed in reconstructing the complex subsurface properties in these urban areas. Strong GPR reflections and highresistivity anomalies were correlated with possible archaeological structures. Subsequent excavations in specific places at both sites verified the geophysical results. The specific case studies demonstrated the applicability of ERT and GPR techniques during the design and construction stages of urban infrastructure works, indicating areas of archaeological significance and guiding archaeological excavations before construction work.

A Study on the Modified Electrode Arrays in Two-Dimensional Resistivity Survey (2차원 전기비저항 탐사를 위한 변형된 전극배열법에 관한 연구)

  • Kim Jung-Ho;Yi Myeong-Jong;Song Yoonho;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.3
    • /
    • pp.59-69
    • /
    • 2001
  • Five kinds of modified electrode arrays were proposed to overcome the weak points of the commonly used arrays using dipole and/or pole in two-dimensional resistivity surveys. The modified pole-pole array was suggested to overcome the inefficiency caused by distant earthing in pole-pole array. Four kinds of modified arrays using dipole were designed to enhance the signal-to-noise ratio of the conventional dipole-dipole and pole-dipole arrays through boosting up the measured potential difference. In the numerical experiments using the two-dimensional modeling and inversion, the effects of the ambient electrical noise and the resolving power were examined and the results showed the validity of the modified arrays proposed in this study.

  • PDF

1-D Deep Resistivity Structure of the Korean Peninsula Using Magnetotelluric(MT) Data (MT 자료를 이용한 한반도의 심부 1차원 전기비저항 구조 연구)

  • Yang, Jun-Mo;Lee, Heui-Soon;Lee, Chun-Ki;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.30 no.2
    • /
    • pp.153-164
    • /
    • 2009
  • We examined the regional 1-D deep resistivity structure of the Korean Peninsula using MT data acquired at seven sites located in the Kyongsang Basin and Kyonggi Massif. At the sites located in the Kyongsang Basin, surrounding sea distorts observed MT response and hence this distortion, so called "sea effect", is corrected using an iterative tensor stripping method. The 1-D layered inversion results for the seven MT sites reveal 4 layered structure, which is composed of 1) near surface layer, 2) upper crust, 3) lower crust and upper mantle, and 4) asthenosphere from the surface downward. Conrad interface, which is a boundary between upper and lower crust, is distinctly identified beneath all the MT sites. Conrad interface depth is estimated to about be 17km in the Kyongsang Basin and about 12km in the Kyonggi Massif, while the upper crust of the Kyongsang Basin is about 5 times more resistive than that of the Kyonggi Massif. Finally, asthenosphere is inferred to exist below a depth of approximately 100km with a resistivity of 200-300 ohm-m.

Inversion Analysis of Magnetotelluric Data Acquired in Geothermal Area of Seokmo Island (석모도 지열지대 자기지전류 탐사 자료의 역산 해석)

  • Lee, Seong-Kon;Park, In-Hwa;Chung, Yong-Hyun;Lee, Tae-Jong
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.654-664
    • /
    • 2011
  • A field campaign of magnetotelluric (MT) and audio-frequency MT (AMT) survey was done at 36 measurement points as a complementary for the previous 44 MT measurements completed during the period of 2005-2006. The purpose of additional MT survey is to investigate the possible fracture system in Seokmo Island, which is conceived to be crucial in accumulation and migration of geothermal hot spring in this area. We have done 2D and 3D inversions of overall MT and AMT data distributed on a grid to interpret subsurface of extended area. The inversion results reveal that at least two major faults are imaged in the inversion results, one of which is in NNE-SWW with steep dip, and another is in E-W direction.

Characterization of an Animal Carcass Disposal Site using Electrical Resistivity Survey (전기비저항 탐사를 이용한 가축사체 매몰지 특성 분석)

  • Ko, Jin-Suk;Kim, Bong-Ju;Choi, Nag-Choul;Kim, Song-Bae;Park, Jeong-Ann;Park, Cheon-Young
    • The Journal of Engineering Geology
    • /
    • v.22 no.4
    • /
    • pp.409-416
    • /
    • 2012
  • In this study, an electrical resistivity survey and a drilling investigation were conducted at an animal carcass disposal site. Chemical analysis of leachate collected from the site was also performed (sampling times: May 2011 and June 2012). Five lines of dipole-dipole electrical resistivity surveys were carried out, along with drilling investigations at 3 points within the disposal areas and 11 points near the disposal site. Two-dimensional inverse modeling of the collected resistivity data was performed to evaluate the properties (size, depth, and form) of the disposal site. Leachate analysis showed that pH of leachate decreased from 7.4 to 6.7, while Eh changed from -358 mV to -48 mV over time. In addition, dissolved ions increased due to the progression of carcass decomposition. Results of the electrical resistivity survey indicated that low resistivity zones (minimum value, $0.64{\Omega}m$) existed at a depth of 8 m from the surface. Considering the bedrock location and carcass disposal depth, there was no evidence of bedrock contamination by leachate. The results of the electrical resistivity survey are consistent with those of the drilling investigation, which indicates that electrical resistivity effectively depicted the properties of the disposal site. This study demonstrates that electrical resistivity survey is a suitable technique for investigation of animal carcass disposal sites.

A Geophysical Survey of Subsidence area around Limestone Mine Sites (석회석 광산지역 지반침하 분석을 위한 물리탐사 기술 적용 연구)

  • Hong, Jinpyo;Ji, Yoonsoo;Oh, Seokhoon;Choi, Sungoong
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.207-215
    • /
    • 2015
  • Electrical resistivity surveys were conducted at two subsidence areas near and at limestone mine sites, respectively, in order to estimate their causes of subsidence and the regions of potential occurrence. In addition, the linkages of mine development with these subsidences were investigated by the rock engineering analysis. Two study areas have different geological setting. One study site is the land subsidence area, which contains clay and sandy soil near the limestone mine, The other study site is the land subsidence area located just above the mine, which is expected to be relevant to the limestone mine. As results of two-dimensional (2D) electrical resistivity surveys at the sites 1 and 2, low resistivity zones, which are 70 ~ 120 ohm-m and 20 ~ 50 ohm-m, respectively, were found under the subsidence zones. For the study site 1, the possibility of subsidence was confirmed by using three-dimensional (3D) inversion performed with 2D resistivity profiles. For the study site 2, the cause of the subsidence and the possibility of subsidence occurrence were confirmed by rock engineering computation with regard to measurement line 7 in which low resistivity accompanied by subsidence area was observed.

Two-Dimensional Interpretation of Ear-Remote Reference Magnetotelluric Data for Geothermal Application (심부 지열자원 개발을 위한 원거리 기준점 MT 탐사자료의 2차원 역산 해석)

  • Lee, Tae-Jong;Song, Yoon-Ho;Uchida, Toshihiro
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.145-155
    • /
    • 2005
  • A two-dimensional (2-D) interpretation of MT data has been performed for the purpose of fracture detection for geothermal development. Remote stations have been operated in Kyushu, Japan (480 km apart) as well as in Korea (60 km and 165 km apart in 2002 and 2003 data set, respectively). Apparent resistivity and phase curves calculated by remote processing with the Japan remote data showed enough quality for 2-D inversion for the whole frequency range. Remote reference processing with Korea remote reference data also showed quite good continuity in apparent resistivity and phase curves except some noisy frequency bands; around the power frequency, 60 Hz, and around the dead band $10^{-1}Hz\;Hz\;\~1\;Hz$, where the natural EM signal is known to be very weak. Even though the subsurface showed severe three-dimensional (3-D) characteristics in the survey area so that 2-D inversion by itself could not give enough information for deep geological structures, the 2-D inversion for the 5 survey lines showed several common features. The conductive semi-consolidate mudstone layer is dipping from north to south (about 500 m depth on the south and 200 m on the north most part of the survey area). The boundary between the low (L-2) and high (H-2) resistivity anomalies can be thought as a major fault with strike $N15^{\circ}E$, passing through the sites 206, 112 and 414. The shallow (< 1 km) conductive anomalies (L-4) seem to be fracture zones having strike E-W (at site 105) and $N60^{\circ}W$ (at site 434). And there exists a conductive layer in the western and west-southern part of the survey area in the depth below $2\~3\;km$, for which further investigation is to be needed.

Application of geophysical exploration for gold in the YongJang mine, Masan (마산 용장광산에서 금광에 대한 물리탐사의 적용)

  • Park, Jong-Oh;Song, Moo-Young;Park, Chung-Hwa;You, Young-June
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.213-219
    • /
    • 2006
  • The Yongjang mine is located in Masan City, Gyeongsangnamdo, which consists of a black shale possessing quartzite veins with othercompositions such as gold, silver, and sublimated sulfur. The average width of the veins is $9{\sim}17cm$ and the average degrees of the gold and silver are 3.6 g/t and 113.6 g/t respectively. A regional and a detailed scale electrical resistivity surveys are conducted to determine the existence of the mineralization zones and the linear structures in the study area. In addition, surveys of a several different array methods are conducted such as dipole-dipole array in the surface and borehole-to-surface array, surface-to-borehole array, and dipole-dipole array in the borehole. The method of element division can be applied to the region in which the borehole is curved, inclined or the distance between the electrodes is shorter than that of nodal points, because the coordinate of each electrode cannot be assigned directly to the nodal point if several electrodes are in an element. Yongjang vein is extended longer under the subsurface than on the surface in the images reconstructed from the 3D inversion. Therefore, it is recognized that the 3-D interpretation of the electrical resistivity survey is a very useful method to figure out the existence of strike and extension direction because the mineralization zones and the linear structures are shown in each depth.

  • PDF