• Title/Summary/Keyword: 3차원 유한요소분석법

Search Result 187, Processing Time 0.027 seconds

A study of the defect detecting method in the NDT gauge using the permanent Magnetics (영구자석을 이용한 비파괴 검사기의 결함검출 기법에 관한 연구)

  • Park, Il-Hwan;Cho, Ji-Eung;Jo, Bong-Kyun;Lee, Geun-Bo;Kim, Deok-Geon;Hong, Young-Hwan;Park, Chi-Young;Park, Gwan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1723-1724
    • /
    • 2006
  • 자기누설탐상법은 비파피검사 방법의 하나로 대상물체를 외부에서 착자시켜 함이 발생할 경우에 결함부위에서 자기누설이 발생하도록 하여, 누설된 자기장을 측정하여 결함의 유무와 크기 등을 판정하는 시스템이다. 본 논문에서는 MFL 방식의 범용 NDT 검사기의 개발을 위해 영구자석을 이용하여 소형 비파괴 검사기를 설계하고, 3차원 유한요소법을 이용하여 해석하고 실제 데이터를 측정하여 그 결과를 비교 분석하였다.

  • PDF

A Study on the Stability and Mechanism of Three-Hinge Failure (Three-Hinge 파괴의 메커니즘 및 안정성에 관한 분석)

  • Moon, Joon-Shik;Park, Woo-Jeong
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.4
    • /
    • pp.5-15
    • /
    • 2017
  • Three-hinge failure occurs in a jointed rock slope with a joint set parallel with slope and a conjugate joint set. Limit Equilibrium Method (LEM) and Finite Element Method (FEM) which are commonly used for slope design, are not suitable for evaluating stability against three-hinge failure, and this study performed parametric study to analyze the failure mechanism and to find influence factors causing three-hinge failure using UDEC which is a commercial two-dimensional DEM based numerical program. Numerical analyses were performed for various joint structural conditions and joint properties as well as ground water conditions. It was found that pore water pressure is the main factor triggering the three-hinge failure and the mode of failure depends on friction angle of basal joint and bedding joint set. The results obtained from this study can be used for adequate and economic footwall slope reinforcement design and construction.

Quasi-Three Dimensional Stability Analysis of the Geosynthetic-Reinforced Soil Retaining Wall System (GRS-RW 보강토벽체 공법의 준3차원 안정해석)

  • 김홍택;박준용
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.177-204
    • /
    • 1998
  • In the present study, a method of quasi-three dimensional stability analysis is proposed for a systematic design of the GRS-RW(Geosynthetic-Reinforced Soil Retaining Wall) system based on the postulated three dimensional failure wedge. The proposed method could be applied to the analysis of the stability of both the straight-line and cove-shaped are. As with skew reinforcements. Maximum earth thrust expected to act on the rigid face wall is assumed to distribute along the depth, and wall displacements are predicted based on both the assumed compaction-induced earth pressures and one dimensional finite element method of analysis. For a verification of the procedure proposed in the present study, the predicted wall displacements are compared with chose obtained from the RMC tests in Canada and the FHWA tests in U.S.A. In these comparisons the wall displacements estimated by the methods of Christopher et at. and Chew & Mitchell are also included for further verification. Also, the predicted wall displacements for the convex-shaped zone reinforced with skew reinforcements are compared with those by $FLAC_{3D}$ program analyses. The assumed compaction-induced earth pressures evaluated on the basic of the proposed method of analysis are further compared with the measurements by the FHWA best wall. A parametric stduy is finally performed to investigate the effects of various design parameters for the stability of the GRS-RW system

  • PDF

Study of the Assembly of Indoor Air-conditioner Unit Using Tolerance Analysis (공차해석을 이용한 에어컨 실내기의 조립성에 관한 연구)

  • Kim, Cheulgon;Hwang, Jihoon;Seo, Hyeongjoon;Mo, Jinyong;Jung, Duhan;Hong, Seokmoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.423-428
    • /
    • 2015
  • To identify locations and causes of interference among parts of an indoor air-conditioning unit, a 3D tolerance analysis was performed and optimized with respect to assembly gaps and the tolerance of each part. The maximum value of the defect rate resulting from the tolerance analysis was found to be 72.6 at the assembly portion of the body and drain. The maximum displacement caused by the thermal deformation during a heating operation was calculated to be approximately 1 mm by using finite element analysis (FEA). Therefore, it is possible that an interference among the assembled parts occurs. The tolerance of the drain was modified by the results of the sensitivity analysis. As a result, the defect rate was greatly reduced to 0.03. Through the FEA results of the indoor air-conditioning unit, it was shown that the improved tolerance of the drain decreased the interference among the assembled parts even though thermal deformation occurs during operation.

Study on the 2G High Temperature Superconducting Coil for Large Scale Superconducting Magnetic Energy Storage Systems (대용량 에너지 저장장치용 2세대 고온 초전도 코일의 특성해석)

  • Lee, Ji-Young;Lee, Seyeon;Kim, Yungil;Park, Sang Ho;Choi, Kyeongdal;Lee, Ji-Kwang;Kim, Woo-Seok
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.157-162
    • /
    • 2015
  • Large scale superconducting magnetic energy storage (SMES) system requires very high magnetic energy density in its superconducting coils to enhance the energy capacity and efficiency of the system. The recent high temperature superconducting (HTS) conductors, so called 2G conductors, show very good performance under very high magnetic field so that they seem to be perfect materials for the large scale SMES coils. A general shape of the coil system with the 2G HTS conductor has been a tor oid, because the magnetic field applied perpendicularly to the surface of the 2G HTS conductor could be minimized in this shape of coil. However, a toroid coil requires a 3-dimensional computation to acquire the characteristics of its critical current density - magnetic field relations which needs very complicated numerical calculation, very high computer specification, and long calculation time. In this paper, we suggested an analytic and statistical calculation method to acquire the maximum magnetic flux density applied perpendicularly to the surface of the 2G HTS conductor and the stored energy in the toroid coil system. Although the result with this method includes some errors but we could reduce these errors within 5 percent to get a reasonable estimation of the important parameters for design process of the HTS toroid coil system. As a result, the calculation time by the suggested method could be reduced to 0.1 percent of that by the 3-dimensional numerical calculation.

A Study on Behavior Analysis of Large-diameter Drilled Shaft by Design Methods in Deep Water Depth Composite Foundation (대수심 대형 복합기초에서 설계기법에 따른 대구경 현장타설말뚝의 거동 분석 연구)

  • Han, Yushik;Choi, Yongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.1
    • /
    • pp.5-16
    • /
    • 2015
  • In the long span bridge construction, construction cost portion of large scale marine foundation is about 40% (KICTEP, 2007). In this study, designs for deep water depth large composite foundation of a super long span cable-stayed girder bridge of prototype were performed by three design methods (ASD, LRFD, Eurocode) and the behaviors of a large diameter drilled shaft were analyzed and the 3D numerical analysis was performed. As a result, the soft rock socket lengths in allowable stress design estimation method were the longest. The soft rock socket lengths estimated by the design approach 2 among Eurocode and the LRFD were similar. The longer the socket length socketed in the soft rock was, the smaller the axial force acting on a large-diameter drilled shaft head was and the smaller the settlement of drilled shaft was.

Evaluation of Structural Stability of a Simple-typed Cultivation Facility for Growing Pleurotus ostreatus (간이 느타리재배사의 구조 안전성 평가)

  • Yum, Sung-Hyun;Yun, Nam-Kyu;Kim, Chul-Soo
    • Journal of Bio-Environment Control
    • /
    • v.17 no.3
    • /
    • pp.181-187
    • /
    • 2008
  • The structural stability of a simple-typed cultivation facility with a width of 5.6 m for growing Pleurotus ostreatus was analyzed by modeling the facility as three-dimensional steel frames. The computation was done by using the finite element analysis program, ANSYS and the criterion of determining structural stability was based on the allowable stress design (ASD). The computational results showed that the structure with a straight-typed bed column was more stable than those with other types of bed columns against snow depth but there was little difference against wind velocity. As results, the interval of rafter had a more influence on safety wind velocity than that of bed column, while the interval of bed column was more important to safety snow depth. Finally the bed column against buckling was stable in all cases considered in this paper.

EFFECTS OF MAXILLARY PROTRACTION ON THE DISPLACEMENT OF THE MAXILLA (상악골 전방 견인이 상악골체의 변위에 미치는 영향)

  • Ko, Jeong-Seok;Kim, Jong-Chul
    • The korean journal of orthodontics
    • /
    • v.25 no.5 s.52
    • /
    • pp.543-555
    • /
    • 1995
  • In the orthopedic therapy, the biomechanical analysis of the appliance is necessary to get a desirable orthopedic effect. The purpose of this study was to investigate the desirable direction and application position of the protraction force. The protraction force of 500g was applied to the first premolar or to the first molar. The direction of force application was paralell or $20^{\circ}$ downward to the occlusal plane respectively. The stress distribution and the displacement within the maxilla was analyzed by a 3-dimensional finite element method. The findings obtained were as follows 1. Protraction forces caused a counterclockwise rotation of the maxilla. 2. The degree of maxillary rotation was less when the force was applied $20^{\circ}$ downward direction to the occlusal plane than when applied to the parallel direction. 3. The degree of rotation of maxilla was greater when the parallel force was applied to the 1st premolar than when applied to the first molar, whereas it was greater when force is applied $20^{\circ}$ downward than at the first premolar. In conclusion, the $20^{\circ}$ downward protraction from the first premolar induced the least counterclockwise rotation of the maxilla and was thought as the desirable direction and application position of the protraction force.

  • PDF

The Pattern of Initial Displacement in Lingual Lever Arm Traction of 6 Maxillary Anterior Teeth According to Different Material Properties: 3-D FEA (유한요소모델에서 레버암을 이용한 상악 6전치 설측 견인 시 초기 이동 양상)

  • Choi, In-Ho;Cha, Kyung-Suk;Chung, Dong-Hwa
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.2
    • /
    • pp.213-230
    • /
    • 2008
  • The aim of this study was to analyze the initial movement and the stress distribution of each tooth and periodontal ligament during the lingual lever-arm retraction of 6 maxillary incisors using FEA. Two kinds of finite element models were produced: 2-properties model (simple model) and 24-properties model (multi model) according to the material property assignment. The subject was an adult male of 23 years old. The DICOM images through the CT of the patient were converted into the 3D image model of a skull using the Mimics (version 10.11, Materialise's interactive Medical Image Control System, Materialise, Belgium). After series of calculating, remeshing, exporting, importing process and volume mesh process was performed, FEA models were produced. FEA models are consisted of maxilla, maxillary central incisor, lateral incisor, canine, periodontal ligaments and lingual traction arm. The boundary conditions fixed the movements of posterior, sagittal and upper part of the model to the directions of X, Y, Z axis respectively. The model was set to be symmetrical to X axis. Through the center of resistance of maxilla complex, a retraction force of 200g was applied horizontally to the occlusal plane. Under this conditions, the initial movements and stress distributions were evaluated by 3D FEA. In the result, the amount of posterior movement was larger in the multi model than in the simple model as well as the amount of vertically rotation. The pattern of the posterior movement in the central incisors and lateral incisors was controlled tipping movement, and the amount was larger than in the canine. But the amount of root movement of the canine was larger than others. The incisor rotated downwardly and the canines upwardly around contact points of lateral incisor and canine in the both models. The values of stress are similar in the both simple and multi model.

THREE DIMENTIONAL FORCE ANALYSIS OF FORCE SYSTEM IN CONTINUOUS ARCHWIRE BY FINITE ELEMENT METHOD (CONTINUOUS ARCHWIRE의 FORCE SYSTEM에 대한 3차원 유한 요소법적 연구)

  • Row, Joon;Ryu, Young-Kyu
    • The korean journal of orthodontics
    • /
    • v.26 no.1 s.54
    • /
    • pp.17-32
    • /
    • 1996
  • It is important to understand the operating mechanism and force system of fixed appliance that most effective for individual tooth movement in various orthodontic appliances. The archwire system of fixed appliance is devided into 3 types, which is continuous arch, segmented arch and sectional arch. The last two types have longer interbracket distance and simple force operating points, so it is easy to control force system by operator. But the continuous arch has shorter interbracket distance and various bracket geometry, so it is hard to control and anaylze the force system. The purpose of this study was three dimentional force and moment analysis of continuous arch system by finite element method, which is similar situation to three dimentional elastic beam in structural engineering. Several sample form of various bracket geometry and artificial lower crowding typodont made by author were constructed, analyzed and compared each other. The results were as follows : 1. The force magnitude is linear proportional to the degree of displacement or tilting of the bracket. 2. The force magnitude is inversely non-linear proportional to the interbracket distance. 3. In three dimensional typodont model, while the force can be compared with that of the sample form in the area where adjacent bracket geometry is simple, the force is much more than the expected value in the area where adjacent bracket geometry is complex.

  • PDF