• Title/Summary/Keyword: 3차원 유동 모델

Search Result 368, Processing Time 0.026 seconds

Understanding the Flow Properties by a Numerical Modeling in the South Sea of Korea (수치모델을 이용한 한국 남해의 유동특성 이해)

  • Bae, Sang-Wan;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.4
    • /
    • pp.295-307
    • /
    • 2012
  • In order to understand the flow properties of the South Sea of Korea, tidal currents, wind-driven currents, density-driven currents and residual flows were investigated by using 3-dimensional numerical model(POM). In offshore regions, tide-induced residual current tends to flow eastward during the spring tide and westward during the neap tide. Total residual flow is irregular due to the bottom topography in the coastal area. The density-driven currents in the coastal area showed to be relatively weak, with little seasonal differences. The special tendency was apparent in the open sea. That is, the flow in the offshore regions showed results similar to that of the Tsushima current. The wind-driven currents in the coastal area showed to be much stronger than in offshore regions. Vertically, the flow of the surface layer was much stronger than that of the bottom layer. Through these results, material transport and diffusion in the south coast, as a basis for predicting the spread of use is expected to be available.

Development of Three-dimensional Baroclinic Hydrodynamic Model and flow Patterns of the Suyoung Bay (3차원 경합 海水流動 모델의 開發과 水營蠻의 폐수유동)

  • 김차겸;이종섭
    • 한국해양학회지
    • /
    • v.28 no.2
    • /
    • pp.86-100
    • /
    • 1993
  • Three-dimensional baroclinic hydrodynamic model, BACHOM-3, is developed using ADI finite difference scheme. The model is applied to a uni-nodal standing wave in a rectagular basin. The model results for the surface elevation and velocities coincide with the analytical results. To verify the field applicability of the model and to investigate the flow patterns of the Suyoung Bay in Pusan, Korea, the model is applied to the bay. The numerically predicted velocity predicted velocity fields during spring tide at normal river flow are compared with field measurements, the comparisons show good agreement. A clockwise residual circulations at the first level (depth = 0∼2m) and the second level (depth=2∼5 m) of the central part of the bay occur, and the ebb flow is stronger than the flood flow. Computed velocity fields show that the phase difference of velocities between the surface layer and bottom layer occurs and the phase lag increases with height from the bottom. Then, the model is applied successfully for the computation of flow fields considering flood river flow and wind effects. When the wind is blowing toward the land from the sea, the flow patterns at the surface layer correspond with the wind direction, but the flow patterns at the near solid boundary of the lower layer show opposite currents to the wind direction.

  • PDF

Numerical Simulation in relation with Coastal Current and Stratification of Water at the Semi-enclosed Estuary (반폐쇄하구에서의 유동 및 성충구조에 관한 시뮬레이션)

  • Lee, Woo-Chul;Lee, Joong-Woo;Park, Dong-Jin
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.565-572
    • /
    • 2004
  • Residual current plays more important role than the tidal current for long-term material transport in coastal areas. The main component of residual current is tide-induced residual current. Otherwise, wind driven current and buoyancy-driven current are important components which change the residual current. To clarify the characteristic of coastal current, application of a three -dimensional model is necessary. This study focuses on clarifying the stratified systems of coastal water affected by freshwater runoff from a river and analyzes the structure of current at Ulsan bay by applying a three-dimensional buoyancy-driven current model. According to the result of “Ulsan bay” study, it shows that the surface layer in semi-enclosed estuaries, which affected by freshwater runoff. has flows going out, and the bottom layer has flows coming in. Besides when the wind blows toward inside of the bay, the surface layer has flows coming in and the bottom layer has flows going out as compensation flows for the surface circulation. The results of simulation could be applicable to examine vertical upwelling, which might be caused by construction of artificial fishing reef to build aqua farm, submerged breakwater to control coastal sediment, and the formulation of oceanic ridge, or a basic study on application to the usage of deep water.

Free-fall Force Measurement in a Shock Tunnel (충격파 풍동에서의 자유 낙하 장치를 활용한 힘 측정)

  • Park, Jinwoo;Chang, Won Keun;Park, Gisu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.463-467
    • /
    • 2016
  • In this paper, acceleration and pressure exerted on a human model were measured under a supersonic condition in a shock tunnel. In order to measure these in an interference-free environment, free-fall technique with an electromagnet and a three-dimensional iron-powdered human model was used. Free-fall experiment was conducted at Mach 4 and the force acting on the model was obtained by calculating the displacement from the flow visualization images.

Three-dimensional Fluid Flow Analysis in Taylor Reactor Using Computational Fluid Dynamics (CFD를 이용한 테일러 반응기의 3차원 유동해석)

  • Kwon, Seong Ye;Lee, Seung-Ho;Jeon, Dong Hyup
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.448-453
    • /
    • 2017
  • We conducted the three-dimensional fluid flow analysis in a Taylor reactor using computational fluid dynamics (CFD). The Taylor flow can be categorized into five regions according to Reynolds number, i.e., circular Couette flow (CCF), Taylor vortex flow (TVF), wavy vortex flow (WVF), modulated wavy vortex flow (MWVF), and turbulent Taylor vortex flow (TTVF), and we investigated the flow characteristics at each region. For each region, the shape, number and length of vortices were different and they influenced on the bypass flow. As a result, the Taylor vortex was found at TVF, WVF, MWVF and TTVF regions. The highest number of Taylor vortex was observed at TVF region, while the lowest at TTVF region. The numerical model was validated by comparing with the experimental data and the simulation results were in good agreement with the experimental data.

Effect of Heat Transfer and Phase Change of Coolant on the Performance of Mixed-gas Ejection System (냉각제의 분사조건 및 상변화가 혼합가스 사출시스템의 성능에 미치는 영향)

  • Kim, Hyun Muk;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.84-93
    • /
    • 2018
  • Three-dimensional (3D) numerical simulations have been carried out to study how coolant injection conditions influence the cooling efficiency and projectile ejection performance in a mixture-gas ejection system (or gas-steam launch system). The 3D single-phase computational model was verified using a 1D model constructed with reference to the previous research and then a two-phase flow computation simulating coolant injection on to hot gas was performed using a DPM (Discrete Phase Model). As a result of varying the coolant flow rate and number of injection holes, cooling efficiency was improved when the number of injection holes were increased. In addition, the change of the coalescence frequency and spatial distribution of coolant droplets caused by the injection condition variation resulted in a change of the droplet diameter, affecting the evaporation rate of coolant. The evaporation was found to be a critical factor in the design optimization of the ejection system by suppressing the pressure drop while the temperature decreases inside the breech.

Usefulness of CFD code in plasma equipment development (플라즈마 장치 개발에서 CFD code의 유용성)

  • Ju, Jeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.22-23
    • /
    • 2007
  • 3차원 모델이 가능한 전산유체역학에 기초를 둔 유체 플라즈마 모델링 소프트웨어가 플라즈마 장치 개발에 어떤 도움을 줄 수 있을 것인지 고찰하였다. 몇 가지의 유도 결합 플라즈마용 안테나 구조와 유동의 역할, 공간 및 표면 화학반응의 결과에 대한 자동 최적화 계산의 유용성에 대해서 논한다.

  • PDF

Development of 3-D Flow Model for Porous Media with Scenario-based Ground Excavation (지반굴착 시나리오 기반의 다공성 매질에 대한 3차원 유동해석모델 구축)

  • Cha, Jang-Hwan;Lee, Jae-Young;Kim, Woo-Seok
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.1
    • /
    • pp.19-27
    • /
    • 2017
  • In recent years, ground subsidence has been frequently occurred by underground cavities due to the excessive groundwater inflow, caused by poor construction and management, during tunnel excavation and underground structure construction. In this study, a numerical model (SEEFLOW3D) was developed to estimate groundwater fluctuations for saturated-unsaturated poros media, evaluates the impact on ground excavation with open cut and non-open cut scenarios. In addition, the visual MODFLOW was applied to demonstrate the verification of the model compared with both results. Our results indicated that the RMSE and NRMSE was obtained to range over -3.95~5.7% and 0.56~4.62%, respectively. The developed model was expected to estimate groundwater discharges and apply analysis tool for optimum design of waterproof wall in future.

유한해석법에 의한 비대칭 급확대 채널에서의 층류 유동 해석

  • 이종신;맹주성;손병진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.3
    • /
    • pp.345-352
    • /
    • 1985
  • 본 연구에서는 내류(internal flow)에서 유로가 비대칭으로 급확대될 경우의 박리현상과 유동현상을 고찰하였다. 비대칭 급확대 채널에서의 층류영역에서 난류영 역까지의 유동현상을 B.F. Armaly, C.E. Thomas는 실험적 해석과 유한요소법을 사용하 여 이론적 해석을 하였고 Donald. M. Kuehn, Denham & Patrick, Kwon, Patrick J. Ro- ache, Anand Kumar등은 같은 모델에 대해서 실험적 해석과 유한차분법을 사용하여 이 론적 해석을 하였으며 지금까지의 유한해석법에 의한 연구는 입구와 출구조건이 같은 경우 및 밀폐 공간 혹은 한면의 속도가 주어지는 밀폐공간등에 대해 수행되어 왔으나 본 연구에서는 입구와 출구조건이 같지 않은 2차원, 비대칭 급확대 채널에서의 유동현 상을 유한해석법으로 해석하여 실험치와 비교하였다.