본 논문에서는 3차원 의료 영상에 적합한 interframe 부호화 알고리즘을 제안하였다. 제안된 알고리즘은 움직임 추정/보상과 변환 부호화를 사용하는 동영상 압축 방법에 기초를 두고 있다. 이 알고리즘에서는 움직임 추정을 위해 와핑 방법이 채택되었다. 그리고, 부호화 효율을 향상시키기 위해 적응적 모드 선택을 사용하여 웨이블릿 변환 영역에서 움직임 조상된 오차 영상과 원 영상을 혼합한다. 이렇게 혼합된 영상은 제로트리 부호화 기법에 의해 압축된다. 본 논문은 제안된 방법이 3차원 의료 영상의 부호화에 매우 유용함을 증명하였다. 모의실험결과는 제안된 방법이 슬라이스 간의 간격과 무관하게 항상 좋은 결과를 얻을 수 있도록 하고, 그럼으로써 3차원 의료 영상 압축에 매우 바람직하다는 사실을 보여준다.
본 연구에서는, 거리 영상에서 mesh를 만들고 그것에서 다양한 LOD(Level of Detail)의 mesh를 생성하는 3차원 물체 LOD 모델링 시스템을 제안하였다. Initial mesh 생성은 마칭 큐브 알고리즘을 사용하였다. 종래의 알고리즘을 다수의 거리 영상에서 효과적으로 mesh를 생성하도록 개선하였다. Base mesh 생성에는 topology를 유지하면서 mesh를 간략화하는 decimation 알고리즘을 사용하였다. 마지막으로 Initial mash와 유사한 새로운 mesh를 생성할 때는 웨이블릿 변환을 적용하여 웨이블릿 개수를 개산하였다. 본 연구에서는 Base mesh를 생성할 때 mesh 간략화 방법을 사용함으로써 웨이블릿 기반의 치명적인 문제인 surface crease 문제를 해결하였다.
본 논문에서는 신호 처리 기술과 가중 퍼지소속함수 기반 신경망 (Neural Network with Weighted Fuzzy Membership Functions; NEWFM)을 이용하여 간질을 검출하는 방안을 제안하였다. 신호 처리 기술로는 웨이블릿 변환(Wavelet Transform), 점증적 증가 방법, 위상공간 재구성(Phase Space Reconstruction)을 이용하였다. 신호 처리 기술의 첫 번째 단계에서는 웨이블릿 변환을 이용하여 뇌파로부터 웨이블릿 계수를 추출하였다. 두 번째 단계에서는 점증적 증가 방법을 이용하여 웨이블릿 계수로부터 첨점(Peak)을 추출하였다. 세 번째 단계에서는 위상공간 재구성을 이용하여 추출된 첨점으로부터 3차원 다이어그램을 생성하였다. NEWFM의 입력으로 사용할 16개의 특징을 추출하기 위하여 유클리드 거리와 통계적 방법을 이용하였다. 이들 16개의 특징을 NEWFM의 입력으로 사용하여 97.5%, 100%, 95%의 정확도, 특이도, 민감도를 각각 구하였다.
깊이 값에 따른 얼굴의 형상은 사람의 특징을 나타내는 중요한 요소 중의 하나로서 각 사람마다 다른 모양을 가지고 있다. 다른 형상을 가진 얼굴 영상으로부터 분리한 주파수 성분은 동일 얼굴에 대한 또 다른 중요 특징 성분의 하나가 될 수 있다. 본 논문은 3차원 얼굴 영상에서 등고선 값을 따라 추출된 영역에 대하여 각 영역별로 주파수 분리를 이용하여 특징을 추출한다. 그리고 이 주파수에 대한 수정된 퍼지 군집화를 적용한 얼굴 인식 알고리즘을 제안한다. 먼저 객체와 배경을 분리하여 얼굴을 추출한 후 얼굴에서 가장 두드러진 형태인 코끝을 찾는다. 이를 이용하여 회전된 얼굴에 대해 정규화를 실시한다. 얼굴의 등고선 영역은 코끝을 기준으로 깊이 값에 따라 영역이 추출되며 이는 사람마다 서로 다른 형상 특징을 가진다. 등고선에 따라 획득된 3차원 얼굴 영상으로부터 이산 웨이블릿 변환을 이용하여 4가지의 주파수 성분을 추출하여 특징정보로 사용한다. 각각의 웨이블릿 주파수 성분을 추출한 등고선 영역에 대해 차원의 감소를 위하여 고유얼굴 추출과 특징 공간상에서 클래스간의 분리를 최대화시키기 위해 선형 판별 분석 알고리즘을 이용하여 유사도를 비교하였다. 본 논문에서는 클래스간의 분별 정보를 향상시키고자 각각의 등고선 영역과 각 영역의 주파수별로 수정된 퍼지 군집화 알고리즘을 적용하여 인식률을 향상 시켰으며, 코끝으로부터 깊이 값이 60인 영역의 경우 98.3%의 인식률을 나타내었다.
데이터 압축 기술은 대용량의 데이터를 효율적으로 저장하고 전송할 수 있게 해주는 기술로, 요구되는 데이터의 용량이 커지고 네트워크의 트래픽이 증가함에 따라 그 중요도가 점점 더 높아지고 있다. 특히 다양한 응용과학과 공학 분야에서 산출되는 볼륨 데이터는 컴퓨팅 기술의 발전에 힘입어 그 용량이 점점 더 증가하는 추세에 있다. 본 논문에서는 Daubechies 웨이블릿 변환을 적용해서 볼륨 데이터를 압축하는 기법을 제안한다. 구현된 D4 웨이블릿 필터 기반 압축 기법은 3차원 볼륨 데이터에 대한 손실 압축과 블록 단위의 무작위 추출 복원을 지원한다. 본 기법은 기존의 Harr 필터를 이용한 압축 방식에 비해 복원 데이터의 손실율이 낮기 때문에, 정밀한 복원 영상이 중요시되는 대용량 데이터의 압축 및 인터렉티브 가시화 응용에 유용하게 사용될 수 있다.
차세대 영상 시스템인 디지털 홀로그램을 서비스하기 위해서는 다양한 측면에서 신호처리 기술이 필요하다. 우리가 주로 사용하는 2차원 및 3차원 자연 영상을 처리하는데 있어서 가장 많이 사용되는 영상처리 도구는 변환이다. 디지털 홀로그램의 특성은 자연 영상과 매우 다른 특성을 갖기 때문에 2차원 영상에서 사용되던 변환 도구들을 디지털 홀로그램에 적용하는 것은 효율성이 매우 낮다. 이를 극복하기 위해 프레넬릿 변환이 제안되었는데 본 논문에서는 웨이블릿 기저함수에 유니터리 프레넬 변환을 적용하고 드뷔시 필터를 이용하여 프레넬릿 변환을 유도하였다. 또한 프레넬릿 변환을 디바이스 및 커널 코드를 이용하여 구현하여 동작 성능을 향상시키도록 하였다. 모든 해상도에 대해 한 화소당 소요되는 평균 시간을 기준으로 살펴보았을 때 디바이스 코드를 이용하여 병렬화 연산을 수행하면 (9,7)필터의 경우에는 평균 242배, (5,3)필터의 경우에는 평균 30배의 성능향상을 가져온다는 것을 확인하였다.
In this paper, the encoder architecture of 3-D wavelet transform based on lifting scheme is designed. Architecture, here, 3 level wavelet transform for spatial decomposition and 2 level wavelet transform for temporal decomposition is adopted with efficient computation.
본 논문에서는 CCD 카메라를 이용하여 획득된 영상들 간의 상대적인 열화(Blur)를 이용하여 물체의 3차원 형상 및 거리 정보를 얻을 수 있는 Depth From Defocus(DFD) 방법을 제안한다. 기존 논문의 주파수 영역에서 디포커스(Defocus) 연산자를 구하는 역필터링(Inverse filtering) 방법은 정확도가 떨어지고, 윈도우 효과(Windowing effects) 및 영상의 경계 효과(Border effect)와 같은 단점이 있었다. 또한 일반적인 영상은 비정체성 (Nonstationary)이기 때문에, 임의의 텍스처에 대한 가우시안(Gaussian) 및 라플라시안(Laplacian) 연산자 등의 필터를 이용하는 디포커스 방법의 추정값은 결과가 좋지 않다. 이러한 문제점들을 해결하기 위해 지역적 분석과 함께 다양한 크기의 윈도우를 제공하는 웨이블릿 변환을 이용한 DFD 방법을 제안한다. 복잡한 텍스처 특성을 갖는 영상의 깊이 추정을 위해서는 웨이블릿 분석을 사용하는 것이 효과적이다. Parseval의 정리에 의해 영상 간의 웨이블릿 에너지의 비율이 열화 계수(Blur parameter) 및 거리와 관련 있음을 증명하였다. 제안된 DFD 알고리즘의 성능을 계산하기 위해 실험은 종합적이며 실제적인 영상을 이용하여 행하였다. 본 논문의 DFD 방식은 기존의 DFD 방법보다 RMS 에러 측면에서 정확한 결과를 보였다.
깊이 값에 따른 얼굴의 형상은 사람의 특징을 나타내는 중요한 요소 중의 하나로서 각 사람마다 다른 모양을 가지고 있으며, 얼굴 영상으로부터 분리한 주파수 성분은 동일한 얼굴에 대하여 또 다른 중요한 하나의 얼굴 특징으로 볼 수 있다. 본 논문은 3차원 얼굴 영상으로부터 등고선 값에 의해 추출된 영역에 대하여 각 영역별로 주파수 분리를 하여 특징을 추출한 후 이 주파수에 대한 퍼지적분을 적용한 얼굴 인식 알고리즘을 제안한다. 먼저 객체와 배경을 분리하여 얼굴을 추출한 후 얼굴에서 가장 두드러진 형태인 코끝을 찾고, 회전에 대해 정규화를 실시한다. 얼굴의 등고선 영역은 코끝을 기준으로 깊이 값에 따라 영역이 추출되며 사람마다 서로 다른 형상 특징을 가진다. 등고선에 따라 획득된 3차원 얼굴 영상으로부터 이산 웨이블릿 변환을 이용하여 4가지의 주파수 성분을 추출하여 특징정보로 사용한다. 각각의 웨이블릿 주파수 성분을 추출한 등고선 영역에 대해 차원의 감소를 위하여 고유얼굴 추출과 특징 공간상에서 클래스간의 분리를 최대화시키기 위해 선형판별분석 알고리즘을 이용하여 유사도를 비교하였다. 클래스간의 분별 정보를 등고선 영역과 각 영역의 주파수 영역에 대해 퍼지적분 방법을 사용하여 인식률을 향상 시켰으며, 깊이 혼합 방식의 경우는 98.6%의 인식률을 나타내었다. 제안된 방법이 다른 알고리즘보다 인식률이 향상되었다.
컴포지트 비디오 신호는 Y와 C성분이 같은 주파수대에서 중첩되어 있기 때문에 영상처리를 위한 Y/C 분리 시 필연적으로 화질의 열화가 발생한다. 이에 본 논문에서는 이러한 화질의 열화를 최소화하기 위하여 3차원 콤 필터 기법과 웨이블릿 변환을 혼용하여 최적의 영상을 만들 수 있는 새로운 콤 필터 기법을 제안하고 이를 VLSI로 설계하였다. 제안된 기법은 웨이블릿을 적용하였으며 비교 라인에 대한 임계값을 적용하여 최상의 화질을 얻을 수 있도록 하였다. 시뮬레이션 결과 제안된 방법은 기존의 방법에 비해 PSNR비교 시 개선된 화질을 나타내었으며, 실제 눈으로 판독한 결과 뚜렷한 화질개선을 나타내었다. 또한 제안된 방법의 실제 응용을 위하여 적합한 하드웨어 구조를 개발하였으며, VHDL 을 이용하여 구현하였고 0.25 micrometer CMOS 공정 라이브러리를 이용하여 최종적인 VLSI 레이아웃을 생성하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.