• Title/Summary/Keyword: 3차원 스케치 소프트웨어

Search Result 7, Processing Time 0.02 seconds

Development and Application of Instruction Program using 3D Sketching Software for 'Planning for Residential Space' Unit of NCS-based on Interior Design Subject (NCS 실내디자인 과목의 '주거공간 계획하기' 단원에서 3차원 스케치 소프트웨어를 활용한 수업 프로그램 개발 및 적용 효과)

  • Ji, Ae-Hee;Yoo, Hyun-Seok
    • 대한공업교육학회지
    • /
    • v.44 no.2
    • /
    • pp.1-27
    • /
    • 2019
  • In recent years, space planning ability using 3D sketch software is required in the working field of interior design. However, vocational high school do not respond appropriately to changes in the industry, because the class of vocational high school consists of hands-on practical classes and 2D CAD based classes. There is a shortage of 3D sketch software-based instruction programs that can improve students' spatial planning skills. Therefore, this study is to develop instruction program using 3D sketch software for 'Planning for Residential Space' unit of NCS-based on interior design subject and to find out the effect on students' academic achievement by applying to vocational high school class. The 3d sketch software based instructional program developed in this study was developed through four stages of preparation, development, implementation and evaluation according to the PDIE model process. The experimental design model used nonequivalent group posttest-only design in this study. Experiments were conducted on vocational high school students in construction and 9 hours of interior design subjects were applied. After the experiments, students were tested for academic achievement in the cognitive, affective, and psychomotor areas. As a result, the instruction program using the 3d sketch program developed in this study was found to be more effective in improving students' academic achievement than existing manual instruction program in both cognitive, affective, and psychomotor areas.

The Effectiveness of the Figure Learning using 3D Graphics Software (3D 그래픽 소프트웨어를 활용한 도형 학습 효과)

  • Shin, Soo-Bum;Kim, Ju-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.1
    • /
    • pp.185-192
    • /
    • 2013
  • The development of hardware, popularization of 3D graphics software could get to easily use 3d graphics tool in the school. And learning difficulties of a shape section increased through more being enforced a shape section of an elementary school. Thus we try to improve learning effectiveness in a shape section using Sketech Up software. To do this, we analyzed existing studies, classified 3D graphics software, provided the selection criteria of vector graphics software. And we explained how to select 3D graphics software. We selected and reorganized the shape contents to use Sketch Up, which make and rotate 3D figures, understand aspects of a shape. And we inserted the content about piling 3D figures in the beginning state of the curriculum. we composed 10 periods and practiced our reorganized curriculum to the teaching and learning using Sketch Up. And we conducted before & after survey to check out t-verified. And we acquired meaningful results statistically. Thus applying Sketch Up to the shape learning can be analyzed effectively.

A Surface Modeling Algorithm by Combination of Internal Vertexes in Spatial Grids for Virtual Conceptual Sketch (공간격자의 내부정점 조합에 의한 가상 개념 스케치용 곡면 모델링 알고리즘)

  • Nam, Sang-Hoon;Kim, Hark-Soo;Chai, Young-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.3
    • /
    • pp.217-225
    • /
    • 2009
  • In case of sketching a conceptual model in 3D space, it's not easy for designer to recognize the depth cue accurately and to draw a model correctly in short time. In this paper, multi-strokes based sketch is adopted not only to reduce the error of input point but to substantiate the shape o) the conceptual design effectively. The designer can see the drawing result immediately after stroking some curves. The shape can also be modified by stroking curves repeatedly and be confirmed the modified shape in real time. However, the multi-strokes based sketch needs to manage the great amount of input data. Therefore, the drawing space is divided into the limited spatial cubical grids and the movable infernal vertex in each spatial grid is implemented and used to define the surface by the multi-strokes. We implemented the spatial sketching system which allows the concept designer's intention to 3D model data efficiently.

3D Modeling of Self-Occluding Objects from 2D Drawings (자기폐색 물체의 2D 커브로부터의 3D모델링)

  • Cordier Frederic;Seo Hye-Won;Cho Young-Sang
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.9
    • /
    • pp.741-750
    • /
    • 2006
  • In this paper, we propose a method for reconstructing a 3D object (or a set of objects) from a 2D drawing provided by a designer. The input 2D drawing consists of a set of contours that may partially overlap each other or be self-overlapping. Accordingly, the resulting 3D object(s) may occlude each other or be self-occluding. The proposed method is composed of three major steps: 2D contour analysis, 3D skeleton computation, and 3D object construction. Our main contribution is to compute the 3D skeleton from the self-intersecting 2D counterpart. We formulate the 3D skeleton construction problem as a sequence of optimization problems, to shape the skeleton and place it in the 3D space while satisfying C1-continuity and intersection-free conditions. Our method is mainly for a silhouette-based sketching interface for the design of 3D objects including self-intersecting objects.

Non-Photorealistic Rendering Using CUDA-Based Image Segmentation (CUDA 기반 영상 분할을 사용한 비사실적 렌더링)

  • Yoon, Hyun-Cheol;Park, Jong-Seung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.11
    • /
    • pp.529-536
    • /
    • 2015
  • When rendering both three-dimensional objects and photo images together, the non-photorealistic rendering results are in visual discord since the two contents have their own independent color distributions. This paper proposes a non-photorealistic rendering technique which renders both three-dimensional objects and photo images such as cartoons and sketches. The proposed technique computes the color distribution property of the photo images and reduces the number of colors of both photo images and 3D objects. NPR is performed based on the reduced colormaps and edge features. To enhance the natural scene presentation, the image region segmentation process is preferred when extracting and applying colormaps. However, the image segmentation technique needs a lot of computational operations. It takes a long time for non-photorealistic rendering for large size frames. To speed up the time-consuming segmentation procedure, we use GPGPU for the parallel computing using the GPU. As a result, we significantly improve the execution speed of the algorithm.

3D Architecture Modeling and Quantity Estimation using SketchUp (스케치업을 활용한 3D 건축모델링 및 물량산출)

  • Kim, Min Gyu;Um, Dae Yong
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.701-708
    • /
    • 2017
  • The construction cost is estimated based on the drawings at the design stage and constructor will find efficient construction methods for budgeting and budgeting appropriate to the budget. Accurate quantity estimation and budgeting are critical to determining whether the project is profitable or not. However, since this process is mostly performed depending on manpower or 2D drawings, errors are likely to occur and The BIM(Build Information Modeling) program, which can be automated, is very expensive and difficult to apply in the field. In this study, 3D architectural modeling was performed using SketchUp which is a 3D modeling software and suggest a methodology for Quantity Estimation. As a result, 3D modeling was performed effectively using 2D drawings of buildings. Based on the modeling results, it was possible to calculate the difference of the quantity estimation by 2D drawing and 3D modeling. The research suggests that the 3D modeling using the SketchUp and the calculation of the quantity can prevent the error of the conventional 2D calculation method. If the applicability of the research method is verified through continuous research, it will contribute to increase the efficiency of architectural modeling and quantity Estimation work.

Development of 3D Printed Snack-dish for the Elderly with Dementia (3D 프린팅 기술을 활용한 치매노인 전용 영양(수분)보충 식품섭취용기 개발)

  • Lee, Ji-Yeon;Kim, Cheol-Ho;Kim, Kug-Weon;Lee, Kyong-Ae;Koh, Kwangoh;Kim, Hee-Seon
    • Korean Journal of Community Nutrition
    • /
    • v.26 no.5
    • /
    • pp.327-336
    • /
    • 2021
  • Objectives: This study was conducted to create a 3D printable snack dish model for the elderly with low food or fluid intake along with barriers towards eating. Methods: The decision was made by the hybrid-brainstorming method for creating the 3D model. Experts were assigned based on their professional areas such as clinical nutrition, food hygiene and chemical safety for the creation process. After serial feedback processes, the grape shape was suggested as the final model. After various concept sketching and making clay models, 3D-printing technology was applied to produce a prototype. Results: 3D design modeling process was conducted by SolidWorks program. After considering Dietary reference intakes for Koreans (KDRIs) and other survey data, appropriate supplementary water serving volume was decided as 285 mL which meets 30% of Adequate intake. To consider printing output conditions, this model has six grapes in one bunch with a safety lid. The FDM printer and PLA filaments were used for food hygiene and safety. To stimulate cognitive functions and interests of eating, numbers one to six was engraved on the lid of the final 3D model. Conclusions: The newly-developed 3D model was designed to increase intakes of nutrients and water in the elderly with dementia during snack time. Since dementia patients often forget to eat, engraving numbers on the grapes was conducted to stimulate cognitive function related to the swallowing and chewing process. We suggest that investigations on the types of foods or fluids are needed in the developed 3D model snack dish for future studies.