• Title/Summary/Keyword: 3차원 사면안정해석

Search Result 50, Processing Time 0.027 seconds

Parametric Studies of Slope stability Analysis by 3D FEM Using Strength Reduction Method (강도감소법에 의한 3차원 사면안정해석에 대한 매개변수 연구)

  • Kim, Young-Min
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.25-32
    • /
    • 2016
  • The two-dimensional (2D) analysis is widely used in geotechnical engineering for slope stability analysis assuming a plane-strain condition. It is implicitly assumed that the slip surface is infinitely wide, and thus three-dimensional (3D) end effects are negligible because of the infinite width of the slide mass. The majority of work on this subject suggests that the 2D factor of safety is conservative (i.e. lower than the 'true' 3D factor of safety). Recently, the 3D finite element method (FEM) became more attractive due to the progress of computational tools including the computer hardware and software. This paper presents the numerical analyses on rotational mode and translational mode slopes using the 2D and 3D FEM as well as 2D limit equilibrium methods (LEM). The results of the parametric study on the slope stability due to mesh size, dilatency angle, boundary conditions, stress history and model dimensions change are analysed. The analysis showed that the factor of safety in 3D analysis is always higher than that in the 2D analysis and the discrepancy of the slope width in W direction on the factor of safety is ignored if the roller type of W direction conditions is applied.

Three-dimensional Slope Stability Analysis of a Dual-lithology Slope (이종지질 분포사면에서의 3차원 사면안정해석)

  • Seo, Yong-Seok;Lee, Kyoung-Mi;Kim, Kwang-Yeom
    • The Journal of Engineering Geology
    • /
    • v.21 no.1
    • /
    • pp.57-64
    • /
    • 2011
  • Three-dimensional slope stability analysis was applied to a failed dual-lithology slope containing both granite and an andesitic dyke, taking account of the differences in shear strength of the different lithologies. A direct shear test of the soil-rock boundary was performed to examine the shear strength of two different types of failure surfaces within different lithologies, and a laboratory test was performed on an upper, weathered soil layer. The test results indicate that shear strength was lower at the soil-rock boundary than within the weathered soil layer. A representative geological section was subjected to two-dimensional slope stability analysis using a limit equilibrium method to assess whether the distribution of lithologies upon the slope influences the results of stability analysis. The results were then compared with those of three-dimensional slope stability analysis, for which input parameters can be varied according to the distribution of lithologies upon the slope. The three-dimensional analysis yielded safety factors of 1.26 under dry conditions and 0.55 under wet conditions, whereas the two-dimensional analysis yielded unstable safety factors of 0.92 and 0.32, respectively. These findings show that the results of stability analysis are affected by the distribution of different lithologies upon the slope. Given that the studied slope collapsed immediately after rainfall, it is likely that the results of the three-dimensional analysis are more reliable.

A Study on Shear Resistance Effect along Marginal Region of Sliding Mass using 3D Slope Stability Analysis (3차원 사면안정해석을 이용한 활동지괴 가장자리부의 전단저항에 관한 연구)

  • Seo Yong-Seok;Ohta Hidemasa;Chae Byung-Gon;Yoon Woon-Sang
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.451-460
    • /
    • 2004
  • The strength of sliding plane is usually assigned on the whole sliding plane with same value in 2D limit equilibrium slope stability method. However, the potential sliding plane is divided into two or three parts which have different sliding resistances. According to the calculation results of 3D slope stability analyses using 4 types of slope cutting models, marginal sliding resistance could affect the safety of slope significantly. In this calculation two kinds of the sliding plane strengths were applied differently to the parts of bottom and margin of the model slope. The effect of marginal resistance was calculated quantitatively. In case of lower sliding resistance of the bottom, the safety factor becomes low in a margin cutting model. However, in case of higher sliding resistance of the bottom, the safety factor decreased slightly in a lower part cutting model and increased in a upper margin cutting model.

A Short Note on 3-Dimensional Slope Stability Analysis (3차원 사면안정해석에 관한 소고)

  • 서용석;윤운상
    • The Journal of Engineering Geology
    • /
    • v.14 no.2
    • /
    • pp.235-241
    • /
    • 2004
  • 사면활동은 삼차원적인 토괴 혹은 암괴의 입체적 움직임의 산물이며 여러 가지 복잡한 지질학적 요인에 의하여 발생하고 있다. 하지만 사면안정해석은 일반적으로 이차원적으로 수행됨으로써 해석모델을 극히 단순화시키고 있다.(중략)

A Reliability Analysis of Slope Stability of Earth-Rockfill Dam (Earth-Rockfill Dam사면파괴에 대한 신뢰도 연구(I))

  • 박현종;이인모
    • Geotechnical Engineering
    • /
    • v.7 no.3
    • /
    • pp.21-32
    • /
    • 1991
  • The purpose of this paper is to develop a reliability model for slope stability of Earth-rockfill dams which accounts for all uncertainties encountered. The uncertain factors of the design variables include the cohesion, the angle of internal friction, and the porewater Pressure in each zone. More specifically, the model errors in estimating those variables are studied in depth. To reduce the uncertainties due to model errors, updated design variables are obtained using Bayesian Theory. For stability analysis, both the two-dimesional stability analysis and the three-dimensional stability analysis where the end effects and the system reliability concept are considered are used for the reliability calculations. The deterministic safety factor by the three-dimensional analysis is lager than that by the two-dimensional anlysis. However, the probability of failure by the three-dimensional analysis is about 3.5 times larger that by the two-dimensional analysis. It is because the system reliability concept is used in the three-dimensional analysis. The sensitivity analysis shows that the probability of failure is more sensitive to the uncertainty of the cohesion than that of the angle of internal friction.

  • PDF

Analysis of Talus Slope Stability using 2D FEM and 3D Limit Equilibrium Method (2차원 유한요소법과 3차원 한계평형법을 이용한 테일러스 사면안정성 해석)

  • Lee, Kyoung-Mi;Kim, Sung-Kwon;Seo, Yaung-Seok;Lee, Sun-Bok;Kim, Dong-Hyun;Kim, Do-Sik
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.381-391
    • /
    • 2007
  • A series of talus slope stability analyses were carried out using 2D FEM and 3D limit equilibrium methods for this study. The FEM analyses on Phase 2 were performed to delineate failure depths based on stress distributions for each slope. The results revealed that the failure surface exist in the colluvium layer of about 3-10 m thickness. Three dimensional models, derived from the FEM analyses and geological field survey, were made for the use in a 3D limit equilibrium analysis. The result shows that all the talus slopes are stable under dry condition, but unstable under saturated condition due to heavy rain.

Time-varient Slope Stability Model for Prediction of Landslide Occurrence (산사태 발생 예측을 위한 시변 사면안정해석 모형)

  • An, Hyunuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.33-33
    • /
    • 2016
  • 산사태 발생 예측은 재해를 예방하고 대처하기 위한 가장 근본적이며 효과적인 방법이나, 과학기술의 발전과 많은 노력에도 불구하고 아직 산사태의 발생 장소와 시기를 예측하는 것은 매우 어려운 일이다. 산사태 발생 예측 기법은 크게 경험론적 지수기법, 통계적 해석기법, 물리적 해석 기법으로 나뉠 수 있다. 이 세 방법은 각기 장단점이 있으나 일반적으로 후자로 갈수록 많은 데이터가 요구되고, 해석에 시간이 필요하며, 보다 신뢰할만한 결과를 도출할 수 있다. 경험론적 지수 기법은 국내에서 실무적으로 널리 활용되고 있으며, 통계적 해석기법에 관한 연구도 수행된 바 있다. 하지만 이 두 방법론은 일정량 또는 일정강도 이상의 강우 발생 시 산사태의 발생 위험도를 공간적으로 예측할 수 있으나, 산사태의 발생 시점과 연속적인 강우량 또는 강우강도의 관계를 정량적으로 분석하기 힘든 한계가 있어 최근에는 이러한 한계를 극복하기 위해 최근 무한사면안정 모형과 토양수분침투 모형을 결합한 시변 사면안정모형들이 활용되기 시작하고 있다. 대표적으로는 TRIGRS가 있으며, 이 모형에서는 선형화한 1차원 Richards 방정식의 해석해를 활용하여 토양수분량을 계산한 후 이 정보를 무한사면안정모형에 반영하여 시변적인 사면안정도를 구하고 있다. 하지만 Richards 방정식을 선형화하기 위해서 제한된 토양수분-압력 관계식이 사용되며, GUI가 제공되지 않아 전처리 및 후처리가 번거로운 한계가 있다. 본 연구에서는 이러한 한계를 개선하기 위해 3차원 Richards방정식을 수치적으로 계산하여 보다 다양한 토양수분-압력 모형과 초기조건을 반영할 수 있게 하였다. 또한 GUI를 지원하여 사용자가 보다 손쉽게 해석모형을 사용할 수 있도록 하였다.

  • PDF

Stability Behavior of Geotextile Tube Composite Structure by Slope Stability and 2-D Limit Equilibrium Analysis (2차원 한계평형 및 사면안정해석을 통한 지오텍스타일 튜브 복합구조물의 안정성 분석)

  • Oh, Young-In;Shin, Eun-Chul;Kang, Jeong-Gu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.4
    • /
    • pp.11-18
    • /
    • 2006
  • Geotextile has been used for various types of containers, such as small hand-filled sandbags, 3-dimensional fabric forms for concrete paste, large soil and aggregate filled geotextile gabion, prefabricated hydraulically filled containers. They are hydraulically filled with dredged materials and have been applied in coastal protection and scour protection, dewatering method of slurry, temporary working platform for bridge construction, temporary embankment for spill way dam construction. Recently, geotextile tube technology is no longer alternative construction technique but suitable desired solution. The paper presents the stability behavior of geotextile tube composite structure by 2-D limit equilibrium and slope stability analysis. 2-D limit equilibrium analysis was performed to evaluate the stability of geotextile tube composite structure to the lateral earth pressure and also transient seepage and stability analysis were conducted to determine the pore pressure distribution by tide variation and slope stability. Based on the results of this paper, the three types of geotextile tube composite structure is stable and also slope stability of overall geotextile tube composite structures is stable with the variation of tidal conditions.

  • PDF

3-D Slope Stability Analysis on Influence of Groundwater Level Changes in Oksan Landslide Area (지하수위 변화에 따른 옥산 산사태 지역의 3차원 사면안정성 해석)

  • Seo, Yong-Seok;Kim, Sung-Kwon;Lee, Kyoung-Mi
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.177-183
    • /
    • 2008
  • In the study, we carried out a 3-D analysis to assess the influence of groundwater level changes on the slope stability, conducting a series of back-numerical analysis to delineate the critical line of the shear strength of the failure surface of a landslide, and a laboratory test to determine the geo-mechanical properties of soil samples. The analysis result shows that the shear strength determined by the laboratory test was distributed below the critical line of shear strength estimated by back-analysis. Differences between driving and resisting force were also analyzed in groundwater conditions of dry and saturation. It appeared that the stress gets greater towards the slope center of the landslide, and the debris mass moves downwards. According to the analysis, the factor of safety becomes 1 with the rise of foundwater level up to -0.85 m from the slope surface, while the slope tends to stay stable during dry seasons.

Review of Applicability of Analysis Method based on Case Study on Rainfall-Induced Rock Slope Failure (강우에 의한 암반사면 파괴 해석 사례 연구를 통한 해석방법 적용성 검토)

  • Jung, Jahe;Kim, Wooseok
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.267-274
    • /
    • 2017
  • Behavior of rock mass depend on the mechanical properties of intact rock and geometrical property of discontinuity distributed in rock mass. In case of rock slope, particularly, location of slope failure surface and behavior after failure are changed due to discontinuities. In this study, two 3D slope stability analysis methods were developed for two different failure types which are circular failure and planar failure, considering that failure type of rock slope is dependent on scale of discontinuity which was then applied to real rock slope to review the applicability. In case of circular failure, stable condition was maintained in natural dry condition, which however became unstable when the moisture content of the surface was increased by rainfall. In case of planar failure, rock slope become more unstable comparing to dry condition which is attributable to decrease in friction angle of discontinuity surface due to rainfall. Viewing analysis result above, analysis method proved to have well incorporated the phenomenon occurred on real slope from the analysis result, demonstrating its applicability to reviewing the slope stability as well as to maintaining the slope.