• Title/Summary/Keyword: 3차원 부정류모사

Search Result 2, Processing Time 0.019 seconds

Sensitivity Analysis of a Transient Groundwater Flow Modeling for Tunnel Excavation (터널 굴착에 따른 지하수 유동계의 변화에 대한 수리상수들의 민감도 분석)

  • Jeong Bok- Seon;Koo Min-Ho;Kim Yongje;Lee Jin-Yong
    • The Journal of Engineering Geology
    • /
    • v.14 no.3 s.40
    • /
    • pp.287-300
    • /
    • 2004
  • By using a simple conceptual model, a sensitivity analysis is performed to examine the effects of changing model parameters on the model outputs, the groundwater discharge and the radius of influence, induced by tunnel construction. The results indicate that the model outputs are most sensitive to the tunnel depth and the hydraulic conductivity, and their sensitivities vary with time. It is also revealed that the sensitivity of the specific yield in- creases constantly with time, and therefore it is as important as the hydraulic conductivity for constructing a wet-system tunnel. A transient model is suggested to simulate the stepwise tunnel excavation and the watertight lining. The model is used for a tunnel construction site to predict groundwater mow into the tunnel and the transient response of the surrounding aquifer system. The predicted results are highly sensitive to the hydraulic conductivites assigned by model calibration. Thus, a postaudit should be made to reduce the uncertainty of the predictive model.

Determination of the Fracture Hydraulic Parameters for Three Dimensional Discrete Fracture Network Modeling (3차원 단열망모델링을 위한 단열수리인자 도출)

  • 김경수;김천수;배대석;김원영;최영섭;김중렬
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.2
    • /
    • pp.80-87
    • /
    • 1998
  • Since groundwater flow paths have one of the major roles to transport the radioactive nuclides from the radioactive waste repository to the biosphere, the discrete fracture network model is used for the rock block scale flow instead of the porous continuum model. This study aims to construct a three dimensional discrete fracture network to interpret the groundwater flow system in the study site. The modeling work includes the determination of the probabilistic distribution function from the fracture geometric and hydraulic parameters, three dimensional fracture modeling and model calibration. The results of the constant pressure tests performed in a fixed interval length at boreholes indicate that the flow dimension around boreholes shows mainly radial to spherical flow pattern. The fracture transmissivity value calculated by Cubic law is 6.12${\times}$10$\^$-7/ ㎡/sec with lognormal distribution. The conductive fracture intensity estimated by FracMan code is 1.73. Based on this intensity, the total number of conductive fractures are obtained as 3,080 in the rock block of 100 m${\times}$100 m${\times}$100 m.

  • PDF