• Title/Summary/Keyword: 3차원 복합재료

Search Result 209, Processing Time 0.027 seconds

Constitutive Equations of 3D Circular Braided Glass Fiber Reinforced Composites (3차원 원형 브레이드 유리섬유 강화 복합재료의 구성방정식)

  • 신헌정;정관수;강태진;윤재륜
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.107-110
    • /
    • 2003
  • 본 연구에서는 3차원 브레이딩 기계를 이용하여 제작된 6 layer의 3차원 원형 형태로 브레이드된 유리 섬유 강화 복합재료의 프리프레그를 이용하여 에폭시 수지를 모체로 하는 RTM(Resin Transfer Molding) 공정을 통해 직교 이방성 복합재료를 제작하였다. 또한 탄성한계 내에서의 구성방정식을 얻기 위해 unit cell 모델링을 통해 복합재료의 기하를 모사하고 method of cells 이론과 homogenization technique를 이용하여 복합재료의 구성방정식을 나타내는 수치해석 코드를 개발하였다. (중략)

  • PDF

Fabrication and Characterization of 3D Woven Textile Reinforced Thermoplastic Composites (3차원 직조형 열가소성수지 복합재료 제조 및 특성화)

  • 홍순곤;변준형;이상관
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.33-40
    • /
    • 2003
  • In order to overcome one of the most pronounced shortcomings of conventional laminated composites, such as the low damage tolerance due to delamination, the thermoplastic materials and 3D (three-dimensional) preforms have been utilized in the manufacture of composite materials. From the newly developed process termed as the co-braiding, hybrid yarns of the thermoplastic fibers (PEEK) and reinforcing fibers (carbon) have been fabricated. In order to further enhance the delamination suppression, through thickness fibers have been introduced by way of 3D weaving technique in the fabrication of textile preforms. The preforms have been thermoformed to make composite materials. Complete impregnation of the PEEK into the carbon fiber bundles has been confirmed. For the comparison of mechanical performance of 3D woven composites, quasi-isotropic laminates using APC-2/AS4 tapes have been fabricated. Tensile and compressive properties of both the composites have been determined. Furthermore. the open hole, impact and CAI(Compression After Impact) tests were also carried out to assess the applicability of 3D woven textile reinforced thermoplastic composites in aerospace structures.

Crimp Angle Dependence of Effective Properties for 3-D Weave Composite (굴곡각에 따른 3차원 평직 복합재료의 등가 물성치 예측)

  • Choi, Yun-Sun;Woo, Kyeongsik
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.33-39
    • /
    • 2016
  • In this study, geometric modeling and finite element analysis of 3-dimensional plain weave composite unit cell consisting of 3 interlaced fiber tows and resin pocket were performed to predict effective properties. First, tow properties were obtained from micro-mechanics finite element unit cell analysis, which were then used in the meso-mechanics analysis. The effective properties were obtained from a series of unit cell analyses simulating uniaxial tensile and shear tests. Analysis results were compared to the analysis and experimental results in the literature. Various crimp angles were considered and the effect on the effective properties was investigated. Initial failure strengths and failure sequence were also examined.

Buckling Sensitivity of Laminated Composite Pipes Under External Uniform Pressure Considering Ply Angle (등분포하중을 받는 복합재료 관로의 적층각 변화에 따른 좌굴 민감도 분석)

  • Han, Taek Hee;Na, Tae Soo;Han, Sang Yun;Kang, Young Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.123-131
    • /
    • 2007
  • The buckling behavior of a fiber reinforced plastic pipe was researched. When a cylindrical structure is made of isotropic material, it shows two dimensional buckled shape which has same deformed section along the longitudinal direction. But an anisotropic cylindrical structure shows three dimensional buckled shape which has different deformed section along the longitudinal direction. Because the modulus of elasticity is varied in a certain direction when ply angles are changed, the strength of a pipe are changed as ply angles are changed. In this study, the limitation of two dimensional and three dimensional buckling mode was investigated and the buckling strength of a laminated composite pipe was evaluated.

Impact Performance of 3D Orthogonal Composites by Automated Tape Placement Process (자동적층 공정에 의한 3차원 직교 섬유배열구조 복합재의 충격특성)

  • Song S-W;Lee C-H;Um M-K;Hwang B-S;Byun J-H
    • Composites Research
    • /
    • v.18 no.3
    • /
    • pp.38-46
    • /
    • 2005
  • In order to characterize the outstanding performance of three-dimensional (3D) composites, the low velocity impact test has been carried out. 3D fiber structures have been achieved by using the automated tape placement (ATP) process and a stitching method. Materials for the ATP and the stitching process were carbon/epoxy prepreg tapes and Kevlar fibers, respectively. Two-dimensional composites with the same stacking sequence as 3D counterparts have also been fabricated for the comparison of damage tolerance. For the assessment of damage after the impact loading, specimens were subjected to C-Scan nondestructive inspection. Compression after impact (CAI) tests were conducted to evaluate residual compressive strength. The damage area of 3D composites was greatly reduced $(30-40\%)$ compared with that of 2D composites. Although the CAI strength did not show drastic improvement for 3D composites, the ratio of retained strength was $5-10\%$ higher than 2D samples. The effect of stitching on the impact performance was negligible above the energy level of 35 Joules.

Strain Recovery Analysis of Non-uniform Composite Beam with Arbitrary Cross-section and Material Distribution Using VABS (VABS를 이용한 임의의 단면과 재료 분포를 가진 비균일 복합재료 보의 변형률 복원 해석)

  • Jang, Jun Hwan;Ahn, Sang Ho
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.204-211
    • /
    • 2015
  • This paper presents a theory related to a two-dimensional linear cross-sectional analysis, recovery relationship and a one-dimensional nonlinear beam analysis for composite wing structure with initial twist. Using VABS including a related theory, the design process of the composite rotor blade has been described. Cross-sectional analysis was performed at cutting point including all the details of geometry and material. Stiffness matrix and mass matrix were linked to each section to make 1D beam model. The 3D strain distributions within the structure were recovered based on the global behavior of the 1D beam analysis and visualize numerical results.

Optimization of Fiber Ratio in Laminated Composites for Development of Three-dimensional Preform T-beam Structure (3차원 프리폼 T-빔 구조물의 개발을 위한 적층복합재료 섬유비율의 최적화)

  • Lee, Dong-Woo;Kim, Chang-Uk;Byun, Joon-Hyung;Song, Jung-Il
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.297-302
    • /
    • 2017
  • Finite element analysis of T-beam laminate structure under bending-torsional loading was conducted to prevent the delamination which is the major failure behavior on laminated composites. Three-dimensional preform, which is that fabric is braided through thickness direction, is suggested from the laminate analysis. The analysis aimed to optimize the fiber ratio in laminated composites. After it is suggested that guideline for design of T-beam structure using commercial software ANSYS Composites PrePost. The results show that strength of T-beam structure is increased 21.6% when the fiber density along with beam length direction is two times bigger than transverse direction. It is expected that development of high strength T-beam structure using designed three-dimensional preform.

Manufacture of 3D Textile Preform and Study on Mechanical Properties of Composites (3D Textile 프리폼 제조 및 복합재료 기계적 특성 연구)

  • Jo, Kwang-Hoon;Klapper, Vinzenz;Kim, Hyeon-Woo;Lee, Jeong-Woon;Han, Joong-Won;Byun, Joon-Hyung;Joe, Chee-Ryong
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.65-70
    • /
    • 2019
  • The aircraft composites wing parts are usually integrated with adhesive or fastener. These laminated composites have weak interlaminar strength, which can lead to delamination. In order to compensate the disadvantages of laminated composites, it is possible to improve the strength, durability, shock and fatigue resistance by reinforcing the fiber in the thickness direction. In addition, using a single structure near-net-shape saves the manufacturing time and the number of fasteners, thus can reduce the overall cost of the composite parts. In this study, compression test, tensile test and open-hole tensile test are carried out for three structural architecture of 3D (three-dimensional) textile preforms: orthogonal(ORT), layer-to-layer(LTL) and through-the-thickness(TTT) patterns. Among these, the orthogonal textile composite shows the highest Young's modulus and strength in tensile and compression. The notch sensitivity of the orthogonal textile composite was the smallest as compared with UD (unidirectional) and 2D (two-dimensional) fabric laminates.

Prediction of effective stiffness on short fiber reinforced composite materials (단섬유 복합재료의 탄성계수 예측)

  • 임태원;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.611-617
    • /
    • 1991
  • Effective stiffness of short fiber composite with a three-dimensional random orientation of fibers is derived theoretically and compared with available experimental data. The laminate analogy and transformed laminate analogy are used for modulus prediction of 2-D and 3-D random composites, respectively. The effective stiffness of random oriented fiber composite can be expressed in terms of longitudinal and transverse stiffnesses of unidirectional composites. The result of transformed laminate analogy is more accurate than other approaches such as, Christensen-Waals equational and Lavengood-Goettler equation, etc. Also the effective properties of random oriented fiber composite can be expressed in terms of fiber and matrix properties such as elastic modulus, shear modulus and Poisson's ratio.

Structural analysis of a thick composite rotor hub system by using equivalent properties (등가 물성을 이용한 두꺼운 복합재 로터 허브 시스템의 구조 해석)

  • ;Yanti Rachmadini
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.7-14
    • /
    • 2003
  • Modeling of thick composite structures for finite element analysis is relatively complicated. 2-D plane elements may cause inaccurate result since the plane stress condition cannot be applicable in these structures. Therefore a 3-D modeling should be used. However, the difficulty to model all the layers with different material properties and ply orientation arise in this case. In this paper, an equivalent modeling is proposed and numerically tested for analysis of thick composite structures. By grouping layers with same material and ply orientation, number of elements through the thickness is remarkably reduced and still the result is close enough to the one from a detail finite element model. MSC/NASTRAN and PATRAN are used for the analysis. The proposed modeling technique has been applied for analysis of composite rotor hub system designed by Korea Aerospace Research Institute(KARI). Using the proposed equivalent modeling technique, we could conduct stress analysis for the hub system and check the safety factor of each part.