• Title/Summary/Keyword: 3차원 물체

Search Result 845, Processing Time 0.028 seconds

Three-dimensional Machine Vision System based on moire Interferometry for the Ball Shape Inspection of Micro BGA Packages (마이크로 BGA 패키지의 볼 형상 시각검사를 위한 모아레 간섭계 기반 3차원 머신 비젼 시스템)

  • Kim, Min-Young
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.81-87
    • /
    • 2012
  • This paper focuses on three-dimensional measurement system of micro balls on micro Ball-Grid-Array(BGA) packages in-line. Most of visual inspection system still suffers from sophisticate reflection characteristics of micro balls. For accurate shape measurement of them, a specially designed visual sensor system is proposed under the sensing principle of phase shifting moire interferometry. The system consists of a pattern projection system with four projection subsystems and an imaging system. In the projection system, four subsystems have spatially different projection directions to make target objects experience the pattern illuminations with different incident directions. For the phase shifting, each grating pattern of subsystem is regularly moved by PZT actuator. To remove specular noise and shadow area of BGA balls efficiently, a compact multiple-pattern projection and imaging system is implemented and tested. Especially, a sensor fusion algorithm to integrate four information sets, acquired from multiple projections, into one is proposed with the basis of Bayesian sensor fusion theory. To see how the proposed system works, a series of experiments is performed and the results are analyzed in detail.

Rendering Quality Improvement Method based on Depth and Inverse Warping (깊이정보와 역변환 기반의 포인트 클라우드 렌더링 품질 향상 방법)

  • Lee, Heejea;Yun, Junyoung;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.714-724
    • /
    • 2021
  • The point cloud content is immersive content recorded by acquiring points and colors corresponding to the real environment and objects having three-dimensional location information. When a point cloud content consisting of three-dimensional points having position and color information is enlarged and rendered, the gap between the points widens and an empty hole occurs. In this paper, we propose a method for improving the quality of point cloud contents through inverse transformation-based interpolation using depth information for holes by finding holes that occur due to the gap between points when expanding the point cloud. The points on the back are rendered between the holes created by the gap between the points, acting as a hindrance to applying the interpolation method. To solve this, remove the points corresponding to the back side of the point cloud. Next, a depth map at the point in time when an empty hole is generated is extracted. Finally, inverse transform is performed to extract pixels from the original data. As a result of rendering content by the proposed method, the rendering quality improved by 1.2 dB in terms of average PSNR compared to the conventional method of increasing the size to fill the blank area.

Study of Crustal Structure in North Korea Using 3D Velocity Tomography (3차원 속도 토모그래피를 이용한 북한지역의 지각구조 연구)

  • So Gu Kim;Jong Woo Shin
    • The Journal of Engineering Geology
    • /
    • v.13 no.3
    • /
    • pp.293-308
    • /
    • 2003
  • New results about the crustal structure down to a depth of 60 km beneath North Korea were obtained using the seismic tomography method. About 1013 P- and S-wave travel times from local earthquakes recorded by the Korean stations and the vicinity were used in the research. All earthquakes were relocated on the basis of an algorithm proposed in this study. Parameterization of the velocity structure is realized with a set of nodes distributed in the study volume according to the ray density. 120 nodes located at four depth levels were used to obtain the resulting P- and S-wave velocity structures. As a result, it is found that P- and S-wave velocity anomalies of the Rangnim Massif at depth of 8 km are high and low, respectively, whereas those of the Pyongnam Basin are low up to 24 km. It indicates that the Rangnim Massif contains Archean-early Lower Proterozoic Massif foldings with many faults and fractures which may be saturated with underground water and/or hot springs. On the other hand, the Pyongyang-Sariwon in the Pyongnam Basin is an intraplatform depression which was filled with sediments for the motion of the Upper Proterozoic, Silurian and Upper Paleozoic, and Lower Mesozoic origin. In particular, the high P- and S-wave velocity anomalies are observed at depth of 8, 16, and 24 km beneath Mt. Backdu, indicating that they may be the shallow conduits of the solidified magma bodies, while the low P-and S-wave velocity anomalies at depth of 38 km must be related with the magma chamber of low velocity bodies with partial melting. We also found the Moho discontinuities beneath the Origin Basin including Sari won to be about 55 km deep, whereas those of Mt. Backdu is found to be about 38 km. The high ratio of P-wave velocity/S-wave velocity at Moho suggests that there must be a partial melting body near the boundary of the crust and mantle. Consequently we may well consider Mt. Backdu as a dormant volcano which is holding the intermediate magma chamber near the Moho discontinuity. This study also brought interesting and important findings that there exist some materials with very high P- and S-wave velocity annomoalies at depth of about 40 km near Mt. Myohyang area at the edge of the Rangnim Massif shield.

Hand Tracking Based Projection Mapping System and Applications (손 위치 트래킹 기반의 프로젝션 매핑 시스템 및 응용)

  • Lee, Cheongun;Park, Sanghun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2016
  • In this paper we present a projection mapping system onto human's moving hand by a projector as information delivery media and Kinect to recognize hand motion. Most traditional projection mapping techniques project a variety of images onto stationary objects, however, our system provides new user experience by projecting images onto the center of the moving palm. We explain development process of the system, and production of content as applications on our system. We propose hardware organization and development process of open software architecture based on object oriented programming approach. For stable image projection, we describe a device calibration method between the projector and Kinect in three dimensional space, and a denoising technique to minimize artifacts from Kinect coordinates vibration and unstable hand tremor.

A Multiple Branching Algorithm of Contour Triangulation by Cascading Double Branching Method (이중분기 확장을 통한 등치선 삼각화의 다중분기 알고리즘)

  • Choi, Young-Kyu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.2
    • /
    • pp.123-134
    • /
    • 2000
  • This paper addresses a new triangulation method for constructing surface model from a set of wire-frame contours. The most important problem of contour triangulation is the branching problem, and we provide a new solution for the double branching problem, which occurs frequently in real data. The multiple branching problem is treated as a set of double branchings and an algorithm based on contour merging is developed. Our double branching algorithm is based on partitioning of root contour by Toussiant's polygon triangulation algorithml[14]. Our double branching algorithm produces quite natural surface model even if the branch contours are very complicate in shape. We treat the multiple branching problem as a problem of coarse section sampling in z-direction, and provide a new multiple branching algorithm which iteratively merge a pair of branch contours using imaginary interpolating contours. Our method is a natural and systematic solution for the general branching problem of contour triangulation. The result shows that our method works well even though there are many complicated branches in the object.

  • PDF

Lateral Vibration Reduction of a Maglev Train Using U-shaped Electromagnets (U 자형 전자석을 사용하는 자기부상열차의 횡진동 저감 연구)

  • Han, Jong-Boo;Kim, Ki-Jung;Han, Hyung-Suk;Kim, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1447-1453
    • /
    • 2012
  • For an electromagnetic suspension (EMS)-type urban Maglev train using U-shaped electromagnets, both the vertical and the lateral air gaps for levitation are maintained only by the electromagnet. The train can run over curved rails without active lateral air gap control because the U-shaped electromagnet simultaneously produces both a levitation force and a guidance force, which is dependent on the levitation force. Owing to the passive control of the lateral air gap, the lateral vibration could exceed the limits of the lateral air gap and acceleration. In this study, dynamic analysis of a Maglev train is carried out, and the effectiveness of a lateral damper for vibration reduction is investigated. To more accurately predict the lateral vibration, a Maglev vehicle multibody model including air-sparing, guideway irregularities, electromagnets, and their controls is developed.

Immersed Boundary Method for numerical Analysis of Bridge Section (가상경계법을 이용한 교량 내풍단면 유동장 수치해석)

  • Kim, Hak Sun;Lee, Sungsu;Nho, Jae Geun
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.69-69
    • /
    • 2011
  • 본 논문에서는 비정상 상태의 비압축성 유동장을 해석하기 위하여 물체맞춤격자방법이 아닌 가상경계법을 사용하였다. 가상경계법은 구조격자를 사용하여 구조물 경계면에서 Momentum Forceing을 사용하여 가상의 경계를 만들어 유동장을 해석하는 방법이다. Navier-Stoke 방정식의 수치 이산화 방법으로 Kim et al(1985)이 사용한 Fractional Step Method(FSM)을 사용하였다. 시간에 대하여 semi-implicit FSM를 사용하였고, 확산항에 대해서는 2차 정확도의 Crank-Nicolson Method를 대류항은 3차 정확도의 Runge-Kutta Method를 사용 하였다. 본 연구에서는 가상경계법을 이용한 유동장 해석이 교량 단면에 대하여 수치해석이 가능한지 검토하였다. 가상경계법은 현재 많은 연구가 유선형의 구조물에 대하여 수행되어 오고 있다. 교량 단면과 같은 각 진 구조물에 대한 검토는 아직 미비한 실정이다. 가상경계법에서 다루고 있는 구조물 경계면에서의 Momentum Forcing 방법이 유선형의 구조물에 맞추어 연구가 진행되었기 때문이다. 먼저 본 연구의 프로그램을 검증하기 위하여 원형 실린더에 대하여 가상경계법을 적용한 결과 Re 수 200에서 Strouhal Number, 양력계수, 항력계수를 이전 연구 결과와 비교하였다. Williamson(1988)과 Zhang(1995)의 연구결과와 유사한 결과를 얻을 수 있다. 그리고 교량의 단면과 같은 각진 구조물(Bluff Body)에 대하여 가상경계법 적용하였다. 본 논문의 연구에서 평가 대상으로 하고 있는 2차원 교량 단면에 대하여 유동장 해석을 하였다. 본 논문에서 정량적인 유체력과 유동장에 대한 비교 및 검토가 이루어지지 못했지만 압력장과 유선의 형태가 이론적인 값을 벗어나지 않고 있는 것으로 확인 되었다. Re 수 2700에서 전산 해석을 수행하였으며, 교량 단면 주위의 압력계수와 박리현상 그리고 후류에서의 Vortex shedding 현상이 모두 적절한 분포가 나타나는 것을 확인할 수 있었다. 따라서 가상경계법을 이용하여 각진 구조물에 대한 주위 유동장해석에 대한 가능성을 확인하였으며, 풍동실험과의 결과비교를 통하여 가상경계법을 이용하여 교량 단면 주위의 유동장 해석 결과를 정량적으로 비교할 것이다.

  • PDF

Numerical Simulation of Free-Surface Flows around a Series 60($C_B=0.6$) model ship (자유표면을 동반하는 시리즈 60($C_B=0.6$) 선형 주위 유동장의 수치계산)

  • Myung-Soo Shin;Kuk-Jin Kang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.13-29
    • /
    • 1996
  • This paper presents calculated results of the free-surface flow around a Series 60($C_B=0.6$) model. Three-dimensional Navier-Sotkes equations are solved and Baldwin-Lomax algebraic turbulence model is adopted to simulate the high Reynolds-number flow. To reduce computational efforts, velocity components near the wall are extrapolated with a the solved by using the Implicit Approximate Factorization method[2]. The successive-over-relaxation method is used for solving pressure-Poisson equation when obtaining the pressure field projecting the divergence-free velocity field. To simulate the free-surface flows more precisely, the numerical scheme solving the equation for the kinematic boundary condition is very important. In this paper, there numerical schemes are employed and the results are compared with the available experimental data.

  • PDF

Study on the Enhancement of the Functionality of Construction Graphical Simulation System (건설 그래픽 시뮬레이션 시스템의 기능개선에 관한 연구)

  • Kim Yeong-Hwan;Seo Jong-Won
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.543-547
    • /
    • 2004
  • Visualization of construction process simulation and physical modeling were considered to overcome the limitations of current graphical simulation. The output of discrete-event simulation programs which are the most common mathematical statistical simulation tool for construction processes were analyzed for the visualization of earthmoving process that dealing with objects without fixed. Object-oriented models for equipment, material and work environments were devised to effectively visualize the numerical simulation results of the working time, the queuing time as well as the amount resources etc. The oscillation of the crane's cable and the lifted material that should be considered to rationally modeled and simulated by construction graphical simulation. The derived equation of motion was solved by numerical analysis procedure. Then obtained results was used for physical modeling.

  • PDF

Estimation of Contact Pressure of a Flat Wiper Blade by Dynamic Analysis (플랫 타입 와이퍼 블레이드의 동적 해석을 통한 누름압 예측)

  • Kim, Wook-Hyeon;Park, Tae-Won;Chai, Jang-Bom;Jung, Sung-Pil;Chung, Won-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.837-842
    • /
    • 2010
  • The wiper system of a vehicle is important because it wipes the windshield, thereby enabling drivers to see through the windshield even under conditions of rain and snow. The blade is the key component of the wiper system because it wipes the windshield. When wiper-arm spring causes the blade to be pressed on the windshield optimum performance of wiping can be achieved when appropriate contact pressure is maintained. In this study, a dynamic analysis of the wiper system is carried out. A three-dimensional finite-element model of the wiper system is generated using SAMCEF, a commercial structural dynamic analysis program. The distribution of the contact pressure of the blade in its dynamic state is calculated. The simulation result is compared to the experiment result. Using the results of this study, the contact pressure of the blade can be estimated.