• Title/Summary/Keyword: 3차원 경로 계획

Search Result 94, Processing Time 0.024 seconds

3D Image Scan Automation Planning based on Mobile Rover (이동식 로버 기반 스캔 자동화 계획에 대한 연구)

  • Kang, Tae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.1-7
    • /
    • 2019
  • When using conventional 3D image scanning methods, it is common for image scanning to be done manually, which is labor-intensive. Scanning a space made up of complicated equipment or scanning a narrow space that is difficult for the user to enter, is problematic, resulting in quality degradation due to the presence of shadow areas. This paper proposes a method to scan an image using a rover equipped with a scanner in areas where it is difficult for a person to enter. To control the scan path precisely, the 3D image remote scan automation method based on the rover move rule definition is described. Through the study, the user can automate the 3D scan plan in a desired manner by defining the rover scan path as the rule base.

An Efficient 3-D Path Planning Algorithm for Robot Navigation (능률적인 3차원 경로계획 알고리즘 개발에 관한 연구)

  • Lee, S.C.;Yang, W.Y.;Kim, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1208-1211
    • /
    • 1996
  • In this paper, an efficient and robust robot path planning technique is discussed. Concentric Ripple Edge Evaluation and Progression( CREEP ) algorithm[1] has been elaborated and expanded to carry out 3-D path planning. Like the 2-D case, robot can always find a path, if one exists, in a densely cluttered, unknown and unstructured 3-D obstacle environment. 3-D space in which the robot is expected to navigate is modeled by stacking cubic cells. The generated path is resolution optimal once the terrain is fully explored by the robot or all the information about the terrain is given. Path planning times are significantly reduced by local path update. Accuracy and efficiency of wave propagation in CREEP algorithm are achieved by virtual concentric sphere wave propagation. Simulations in 2-D and 3-D spaces are performed and excellent results are demonstrated.

  • PDF

Semi-3D Path Planning using Virtual Tangential Vector and Fuzzy Control (Virtual Tangential Vector와 퍼지 제어를 이용한 준 3차원 경로계획)

  • Kwak, Kyung-Woon;Jeong, Hae-Kwan;Kim, Soo-Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.127-134
    • /
    • 2010
  • In this paper, a hybrid semi-3D path planning algorithm combining Virtual Tangential Vector(VTV) and fuzzy control is proposed. 3D dynamic environmental factors are reflected to the 2D path planning model, VTV. As a result, the robot can control direction from 2D path planning algorithm VTV and speed as well depending on the fuzzy inputs such as the distance between the robot and obstacle, roughness and slope. Performances and feasibilities of the suggested method are demonstrated by using Matlab simulations. Simulation results show that fuzzy rules and obstacle avoidance methods are working properly toward virtual 3D environments. The proposed hybrid semi-3D path planning is expected to be well applicable to a real life environment, considering its simplicity and realistic nature of the dynamic factors included.

A Design of Path Planning Algorithm for Biped Walking Robot in 3-D Obstacle Environment (3차원 장애물에서의 이족보행로봇을 위한 이동경로계획 알고리즘의 설계)

  • Min, Seung-Ki;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.576-580
    • /
    • 1997
  • This paper presents a path planning algorithm for biped walking robot in 3-D workspace. Since the biped walking robot can generate path on some 3-D obstacles that cannot generate path in case of mobile robot, we have to make a new path planning algorithms. A 3-D-to-2-D mapping algorithm is proposed and two kinds of path planning algorithms are also proposed. They make it easier to generate an efficient path for biped walking robot under given environment. Some simulation results are shown to prove the effectiveness of proposed algorithms.

  • PDF

VR, AR Simulation and 3D Printing for Shoulder and Elbow Practice (VR, AR 시뮬레이션 및 3D Printing을 활용한 어깨와 팔꿈치 수술실습)

  • Lim, Wonbong;Moon, Young Lae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.175-179
    • /
    • 2016
  • Recent advances in technology of medical image have made surgical simulation that is helpful to diagnosis, operation plan, or education. Improving and enhancing the medical imaging have led to the availability of high definition images and three-dimensional (3D) visualization, it allows a better understanding in the surgical and educational field. The Real human field of view is stereoscopic. Therefore, with just 2D images, stereoscopic reconstruction process through the surgeon's head, is necessary. To reduce these process, 3D images have been used. 3D images enhanced 3D visualization, it provides significantly shorter time for surgeon for judgment in complex situations. Based on 3D image data set, virtual medical simulations, such as virtual endoscopy, surgical planning, and real-time interaction, have become possible. This article describes principles and recent applications of newer imaging techniques and special attention is directed towards medical 3D reconstruction techniques. Recent advances in technology of CT, MR and other imaging modalities has resulted in exciting new solutions and possibilities of shoulder imaging. Especially, three-dimensional (3D) images derived from medical devices provides advanced information. This presentation describes the principles and potential applications of 3D imaging techniques, simulation and printing in shoulder and elbow practice.

A study of successful SISP(strategic information system planning): focused on organizational context (성공적인 전략정보시스템 계획(SISP)수립을 위한 연구 - 조직적 배경을 중심으로-)

  • Cho, Hyun-Dal
    • Management & Information Systems Review
    • /
    • v.28 no.4
    • /
    • pp.199-228
    • /
    • 2009
  • SISP(strategic information system planning) is an important part of IS management. Through it, organizations establish effective long-term use of IS and ensure their support of organizational objectives. This entails establishing priorities for implementation of new applications, developing policies and procedures for managing the IS function and IS services, and construction of information architecture. Many studies have tried to improve SISP practice by discussing planning problems, identifying factors critical to the success of planning efforts, and providing methodologies for carrying out the process. Others tested the appropriateness of formal SISP under varying contextual circumstances and examined a number of contextual variables for their effects on SISP practice and its effectiveness. In this paper, the two criteria(the improvement of planning capabilities and the fulfillment of planning objectives) of successful SISP will be given and the relationship between organizational variable(IS-present role, IS-future role, formalization, time horizon) and improvement of planning capabilities will be analyzed. And then the relationship between improvement of planning capabilities and fulfillment of planning objectives will be examined. Specific description about the purpose of this study is as follow: (1) What are the determinants of successful SISP? (2) Which contextual factors are important and how strong are their influences to the improvement of planning capabilities? (3) How important is the improvement of planning capabilities to the fulfillment of planning objectives?

  • PDF

Tumor boundary extraction from brain MRI images using active contour models (Snakes) (스네이크를 이용한 뇌 자기 공명 영상에서 종양의 경계선 추출)

  • Ryeong-Ju Kim;Young-Chul Kim;Heung-Kook Choi
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2003
  • The study is to automatically or semi-automatically detect the accurate contour of tumors or lesions using active contour models (Snakes) in the MRI images of the brain. In the study we have improved the energy-minimization problem of snakes using dynamic programming and have utilized the values of the canny edge detector by the image force to make the snake less sensitive in noises. For the extracted boundary, the inside area, the perimeter and its center coordinates could be calculated. In addition, the multiple 2D slices with the contour of the lesion wore combined to visualized the shape of the lesion in 3D. We expect that the proposed method in this paper will be useful to make a treatment plan as well as to evaluate the treatments.

  • PDF

An Autonomous Navigation System for Unmanned Underwater Vehicle (무인수중로봇을 위한 지능형 자율운항시스템)

  • Lee, Young-Il;Jung, Hee;Kim, Yong-Gi
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.3
    • /
    • pp.235-245
    • /
    • 2007
  • UUV(Unmanned Underwater Vehicle) should possess an intelligent control software performing intellectual faculties such as cognition, decision and action which are parts of domain expert's ability, because unmanned underwater robot navigates in the hazardous environment where human being can not access directly. In this paper, we suggest a RVC intelligent system architecture which is generally available for unmanned vehicle and develope an autonomous navigation system for UUV, which consists of collision avoidance system, path planning system, and collision-risk computation system. We present an obstacle avoidance algorithm using fuzzy relational products for the collision avoidance system, which guarantees the safety and optimality in view of traversing path. Also, we present a new path-planning algorithm using poly-line for the path planning system. In order to verify the performance of suggested autonomous navigation system, we develop a simulation system, which consists of environment manager, object, and 3-D viewer.

Aircraft 4D Trajectory Model for Air Traffic Control Simulator (항공교통관제 시뮬레이션을 위한 항공기 4D 궤적모델 개발)

  • Jung, Hyuntae;Lee, Keumjin
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.3
    • /
    • pp.264-271
    • /
    • 2017
  • This paper presents air traffic control simulation model for generating 4D trajectory, and aircraft dynamic model based on 4D trajectory information. With aircraft parameters from BADA and Total Energy Model, the trajectory is defined through modified Bezier curve and the simulation supports two aircraft control methods based on controlled time of arrival (CTA) or airspeed. The simulation results shown that flight time and path were almost identical to the defined trajectory, and derived the differences of each control methods according to wind conditions. Based on the simulation model developed in this study, it is expected to be applied to various air traffic management researches. Future studies will focus on applying optimization techniques in order to minimize the difference between generated trajectories and actual flight routes. This work will increase utilization of developed simulation futhermore.

Multi-User Virtual Reality System for Surgery-Planning (수술 계획을 위한 다중 사용자 가상현실 시스템)

  • Suyeon Park;Gayun Suh;HyeongHwan Shin;Junsu Cho;Jaejoon Jeong;Sei Kang;Bogyeong Seo;Minseo Lee;Seungwon Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.737-739
    • /
    • 2023
  • 몰입형 가상현실 시스템은 더 나은 3차원 시각정보를 제공할 수 있어, 의료계에서 해부학에 대한 이해를 높이는 데 사용되고 있다. 우리는 몰입형 가상현실에서 다중 사용자가 함께 MRI 영상으로부터 생성된 볼륨 렌더링 된 객체를 관찰하고 수술을 계획할 수 있는 시스템을 개발하여 소개하고자 한다.