• Title/Summary/Keyword: 3차원위치추적

Search Result 221, Processing Time 0.029 seconds

Wave Forces Acting on Large Vertical Circular Cylinder and Consequent Wave Transformations by Full-Nonlinear Analysis Method after Wave Breaking (강비선형해석법에 의한 대형연직원주구조물에 작용하는 쇄파후의 파력 및 파랑변형)

  • Lee, Kwang-Ho;Shin, Dong-Hoon;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.401-412
    • /
    • 2008
  • Simulations of three-dimensional numerical wave tank are performed to investigate wave force acting on a large cylindrical structure and consequent wave deformation, which are induced by bore after breaking waves. The numerical model is based on the three-dimensional Navier-Stokes equations with a finite-difference method combined with a volume of fluid(VOF) method, which is capable of tracking the complex free surface, including wave breaking. In order to promote wave breaking of the incident wave, the approach slope was built seaward of the structure with a constant slope and a large cylindrical structure was installed on a flat bed. The incident waves were broken on the approach slope or flat bed by its wave height. In the present study, all waves acting on the large cylindrical structure were limited to breaking bore after wave breaking. The effects of the position of the structure and the incident wave height on the wave force and wave transformations were mainly investigated with the concern of wave breaking. Further, the relations between the variation of wave energy by wave propagation after wave breaking and wave force acting on the structure were discussed to give the understanding of the full-linear wave-structure interactions in three-dimensional wave fields.

A Study on the Design and Implementation of a Position Tracking System using Acceleration-Gyro Sensor Fusion

  • Jin-Gu, Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.49-54
    • /
    • 2023
  • The Global Positioning System (GPS) was developed for military purposes and developed as it is today by opening civilian signals (GPS L1 frequency C/A signals). The current satellite orbits the earth about twice a day to measure the position, and receives more than 3 satellite signals (initially, 4 to calculate even the time error). The three-dimensional position of the ground receiver is determined using the data from the radio wave departure time to the radio wave Time of Arrival(TOA) of the received satellite signal through trilateration. In the case of navigation using GPS in recent years, a location error of 5 to 10 m usually occurs, and quite a lot of areas, such as apartments, indoors, tunnels, factory areas, and mountainous areas, exist as blind spots or neutralized areas outside the error range of GPS. Therefore, in order to acquire one's own location information in an area where GPS satellite signal reception is impossible, another method should be proposed. In this study, IMU(Inertial Measurement Unit) combined with an acceleration and gyro sensor and a geomagnetic sensor were used to design a system to enable location recognition even in terrain where GPS signal reception is impossible. A method to track the current position by calculating the instantaneous velocity value using a 9-DOF IMU and a geomagnetic sensor was studied, and its feasibility was verified through production and experimentation.

An Implementation of Real-Time Numeral Recognizer Based on Hand Gesture Using Both Gradient and Positional Information (기울기와 위치 정보를 이용한 손동작기반 실시간 숫자 인식기 구현)

  • Kim, Ji-Ho;Park, Yang-Woo;Han, Kyu-Phil
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.3
    • /
    • pp.199-204
    • /
    • 2013
  • An implementation method of real-time numeral recognizer based on gesture is presented in this paper for various information devices. The proposed algorithm steadily captures the motion of a hand on 3D open space with the Kinect sensor. The captured hand motion is simplified with PCA, in order to preserve the trace consistency and to minimize the trace variations due to noises and size changes. In addition, we also propose a new HMM using both the gradient and the positional features of the simplified hand stroke. As the result, the proposed algorithm has robust characteristics to the variations of the size and speed of hand motion. The recognition rate is increased up to 30%, because of this combined model. Experimental results showed that the proposed algorithm gives a high recognition rate about 98%.

Reconstructed image quality enhancement by an improved pickup model in computational integral imaging (컴퓨터 집적 영상 기술에서 픽업 모델 개선에 의한 복원 화질 개선 방법)

  • Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1598-1603
    • /
    • 2011
  • This paper describes an enhancement method for a computational pickup model. The conventional computational pickup model utilizes the ray-trace model and the pinhole model. The conventional model is very useful, however, it suffers from quality degradation of reconstructed images at long distances. To overcome the problem, we propose an accurate pickup model. The proposed model includes integration of the rays incoming to a sensor that generates a pixel, resulting in robustness on the Aliasing artifact. To show the effectiveness of the proposed method, experimental results are carried out. The results indicated that the proposed method is superior to the conventional method.

Techniques on Multi-Marker for the Implementation of Augmented Reality (증강현실 구현을 위한 Multi-Marker에 관한 기법)

  • Kim, Hag-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.109-116
    • /
    • 2010
  • This study is intended to propose a technique that can trace objects by utilizing the multimarker method in the Marker Recognition which is a bridge way connecting virtuality and reality in complex environments or in a condition hands become obstacles. In the existing marker method, the object becomes blinking when the maker is blocked since this method relies only on single marker. However, the researcher was able to confirm the appearance of augmented object when the marker was blocked for the multiple markers replaced the blocked one. In order to implement such technique, multi-marker estimation was utilized with perspective matrix. The advantage is the fast estimation process for there is no need of other calculation. The implemented technique can detect markers and locate their positions, represent 3-D object in various circumstances.

Visual Servoing of Robotic Manipulators for Moving Objects (동적 물체에 대한 로봇 매니퓰레이터의 Visual Servoing)

  • Sim, Kwee-Bo;Oh, Seung-Wook
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.15-24
    • /
    • 1996
  • This paper presents a new method for visual servoing to control the pose(position and orientation) of the robotic manipulators for grasping the 3-D moving object whose initial pose and moving informations are unknown by using the stereo camera. The stereo camera is mounted on the end-effector of robotic manipulator. In order to track the current pose of robotic manipulator to the desired pose, we use the image Jacobian, which is described by the differential transform, relating the change in image feature point to the change in the object's pose with respect to the camera. In this paper the simple PD controller is adopted for the robotic manipulator to track the desired pose. Finally, the effectiveness of the proposed method is confirmed by some computer simulations.

  • PDF

3D Orientation and Position Tracking System of Surgical Instrument with Optical Tracker and Internal Vision Sensor (광추적기와 내부 비전센서를 이용한 수술도구의 3차원 자세 및 위치 추적 시스템)

  • Joe, Young Jin;Oh, Hyun Min;Kim, Min Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.579-584
    • /
    • 2016
  • When surgical instruments are tracked in an image-guided surgical navigation system, a stereo vision system with high accuracy is generally used, which is called optical tracker. However, this optical tracker has the disadvantage that a line-of-sight between the tracker and surgical instrument must be maintained. Therefore, to complement the disadvantage of optical tracking systems, an internal vision sensor is attached to a surgical instrument in this paper. Monitoring the target marker pattern attached on patient with this vision sensor, this surgical instrument is possible to be tracked even when the line-of-sight of the optical tracker is occluded. To verify the system's effectiveness, a series of basic experiments is carried out. Lastly, an integration experiment is conducted. The experimental results show that rotational error is bounded to max $1.32^{\circ}$ and mean $0.35^{\circ}$, and translation error is in max 1.72mm and mean 0.58mm. Finally, it is confirmed that the proposed tool tracking method using an internal vision sensor is useful and effective to overcome the occlusion problem of the optical tracker.

Motion Plane Estimation for Real-Time Hand Motion Recognition (실시간 손동작 인식을 위한 동작 평면 추정)

  • Jeong, Seung-Dae;Jang, Kyung-Ho;Jung, Soon-Ki
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.347-358
    • /
    • 2009
  • In this thesis, we develop a vision based hand motion recognition system using a camera with two rotational motors. Existing systems were implemented using a range camera or multiple cameras and have a limited working area. In contrast, we use an uncalibrated camera and get more wide working area by pan-tilt motion. Given an image sequence provided by the pan-tilt camera, color and pattern information are integrated into a tracking system in order to find the 2D position and direction of the hand. With these pose information, we estimate 3D motion plane on which the gesture motion trajectory from approximately forms. The 3D trajectory of the moving finger tip is projected into the motion plane, so that the resolving power of the linear gesture patterns is enhanced. We have tested the proposed approach in terms of the accuracy of trace angle and the dimension of the working volume.

Evaluation of Magnetic Resonance Imaging using Image Co-registration in Stereotactic Radiosurgery (정위방사선수술시 영상공동등록을 이용한 자기공명영상 유용성 평가)

  • Jin, Seongjin;Cho, Jihwan;Park, Cheolwoo
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.4
    • /
    • pp.235-240
    • /
    • 2017
  • The purpose of this study is to confirm the safety of the clinical application of image co - registration in steteotactic radiosurgery by evaluating the 3D positioning of magnetic resonance imaging using image co-registration. We performed a retrospective study using three-dimensional coordinate measurement of 32 patients who underwent stereotactic radiosurgery and performed magnetic resonance imaging follow-up using image co-registration. The 3 dimensional coordinate errors were $1.0443{\pm}0.5724mm$ (0.10 ~ 1.89) in anterior commissure and $1.0348{\pm}0.5473mm$ (0.36 ~ 2.24) in posterior commissure. The mean error of MR1 (3.0 T) was lower than that of MR2 (1.5 T). It is necessary to minimize the error of magnetic resonance imaging in the treatment planning using the image co - registration technique and to confirm it.

Motion Capture using both Human Structural Characteristic and Inverse Kinematics (인체의 구조적 특성과 역운동학을 이용한 모션 캡처)

  • Seo, Yung-Ho;Doo, Kyoung-Soo;Choi, Jong-Soo;Lee, Chil-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.2
    • /
    • pp.20-32
    • /
    • 2010
  • Previous hardware devices to capture human motion have many limitations; expensive equipment, complexity of manipulation or constraints of human motion. In order to overcome these problems, real-time motion capture algorithms based on computer vision have been actively proposed. This paper presents an efficient analysis method of multiple view images for real-time motion capture. First, we detect the skin color regions of human being, and then correct the image coordinates of the regions by using camera calibration and epipolar geometry. Finally, we track the human body part and capture human motion using kalman filter. Experimental results show that the proposed algorithm can estimate a precise position of the human body.