• 제목/요약/키워드: 3차강성

Search Result 195, Processing Time 0.031 seconds

Variation of Elastic Stiffness of Polydimethylsiloxane (PDMS) Stretchable Substrates for Wearable Packaging Applications (웨어러블 패키징용 Polydimethylsiloxane (PDMS) 신축성 기판의 강성도 변화거동)

  • Choi, Jung-Yeol;Park, Dae-Woong;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.125-131
    • /
    • 2014
  • In order to develop stretchable substrates for wearable packaging applications, the variation behavior of elastic modulus was evaluated for transparent PDMS Sylgard 184 and black PDMS Sylgard 170 as a function of the base/curing agent mixing ratio. Both for Sylgard 184 and Sylgard 170, the true elastic modulus evaluated on a true stress-true strain curve was higher more than two times compared to the engineering elastic modulus obtained from an engineering stres-sengineering strain curve, and their difference became larger with increasing the stiffness of the PDMS. Sylgard 184 exhibited a maximum engineering elastic modulus of 1.74 MPa and a maximum true elastic modulus of 3.57 MPa at the base/curing agent mixing ratio of 10. A maximum engineering elastic modulus of 1.51 MPa and a maximum true elastic modulus of 3.64 MPa were obtained for Sylgard 170 at the base/curing agent mixing ratio of 2.

Damage Location Detection of Shear Building Structures Using Mode Shape (모드형상을 이용한 전단형 건물의 손상 위치 추정)

  • Yoo, Suk Hyeong;Lee, Hong Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.124-132
    • /
    • 2013
  • Damage location and extent could be detected by the inverse analysis on dynamic response of the damaged structure. In general, detection of damage location is possible by the observation of the mode shape difference between undamaged and damaged structure and assessment of stiffness reduction is possible by the observation of the natural frequency difference of them. The study on damage detection by the dynamic response in civil structures is reported enough and in practical use, but in building structures it is reported seldom due to several problems. The purpose of this study is to present the damage detection method on shear building structures by mode shape. The damage location index using 1st mode shape is observed theoretically to find out damage location. The damage detection method is applied to numerical analysis model such as MATLAB and MIDAS GENw for the verification. Finally the shaking table test on 3 story shear building is performed for the examination of the damage detection method. In shaking table results, as the story stiffness decrease by 25% the 1st mode frequency increase by 12%, and the damage location index represents minus at damaged story.

Tension Estimation of External Tendons in PC Bridges Using Vibration Measurement Method (진동 측정법을 이용한 PC교량 외부텐던의 장력 추정)

  • Park, Sung Woo;Jung, Ha Tae;Jung, Soo Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.84-92
    • /
    • 2014
  • In this study, vibrational tendon tension measurement methods are applied to estimate tension of external tendons used in segmental post-tensioned bridges. The acceleration of various length type of tendons is measured and natural frequencies are obtained using FFT (Fast Fourier Transform). The obtained natural frequencies are within 1% error regardless of sensor direction and location. On the basis of natural frequency of tendon, estimation of the tendon tension is performed by using many types of solutions such as string theory equation, multi mode estimation, practical formula estimation and stiff string with clamped-clamped boundary conditions. The results are compared with each other and have shown that the flexural stiffness is not negligible in tendons of this type causing the vibration mode to be inharmonically related. The results have shown that the method using stiff string equation with clamped-clamped boundary conditions is more accurate than the other methods. Application example of in-service bridges has shown that force distribution effects from friction at deviation blocks can be effectively detected.

A C Finite Element of Thin-Walled Laminated Composite I-Beams Including Shear Deformation (전단변형을 고려한 적층복합 I형 박벽보의 C유한요소)

  • Baek, Seong-Yong;Lee, Seung-Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.349-359
    • /
    • 2006
  • This paper presents a new block stiffness matrix for the analysis an orthogonal Cartesian coordinate system. The displacement fields are defined using the first order shear deformable beam theory. The longitudinal displacement can be expressed as the sum of the projected plane deformation of the cross-section due to Timoshenko's beam theory and axial warping deformation due to modified Vlasov's thin-waled beam theory. The derived element takes into account flexural shear deformation and torsional warping deformation. Three different types of beam elements, namely, the two-noded, three-noded, and four-noded beam elements, are developed. The quadratic and cubic elements are found to be very efficient for the flexural analysis of laminated composite beams. The versatility and accuracy of the new element are demonstrated by comparing the numerical results available in the literature.

Chaotic Behavior of 2-Dimensional Airfoil in Incompressible Flow (비압축성 유동장내 2차원 익형의 혼돈거동)

  • 정성원;이동기;이상환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.495-508
    • /
    • 1995
  • The self-excited vibrations of airfoil is related to the classical flutter problems, and it has been studied as a system with linear stiffness and small damping. However, since the actual aircraft wing and the many mechanical elements of airfoil type have various design variables and parameters, some of these could have strong nonlinearities, and the nonlinearities could be unexpectedly strong as the parameters vary. This abrupt chaotic behavior undergoes ordered routes, and the behaviors after these routes are uncontrollable and unexpectable since it is extremely sensitive to initial conditions. In order to study the chaotic behavior of the system, three parameters are considered, i.e., free-stream velocity, elastic distance and zero-lift angle. If the chaotic parameter region can be identified from the mathematically modeled nonlinear differential equation system, the designs which avoid chaotic regions could be suggested. In this study, by using recently developed dynamically system methods, and chaotic regions on the parameter plane will be found and the safe design variables will be suggested.

Rotordynamic Analysis of a Multistage Turbine Pump Considering the Lomakin Effect (로마킨효과를 고려한 다단터빈펌프의 동특성 해석)

  • 이동환;김영철;최상규;이안성
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.276-281
    • /
    • 1995
  • 마모씨일과 발란스디스크에서의 로마킨효과가 3600rpm에서 운전되는 14단 터빈펌프의 동특성에 미치는 영향을 고찰한 결과 다음과 같은 결론을 얻을 수 있었다. 1. 14단 터빈펌프 시제품 해석을 위한 유한요소 모델링 및 해석결과는 실험적 모드해석을 통하여 5% 이내의 오차로 검증되었다. 2. 마모링 및 밸런스 디스크의 로마킨효과를 고려하였을 때 시제품 펌프의 위험속도는 그렇지 않았을 때에 비하여 1차의 경우 약 50% 상승하나 고차의 경우는 그 영향이 미미하였다. 그런데 1차 위험속도가 운전속도와 밀접한 관련이 있으므로 설계시 로마킨효과는 반드시 고려되어야 한다. 3. 마모링 및 밸런스디스크의 설계변경에 의하여 시제품 펌프의 강성을 변화시킬 경우 위험속도가 크게 변화하는 것으로 나타났다. 이를 이용하면 펌프의 심각한 구조변경 없이도 씨일의 적절한 설계에 의하여 임펠러 깃등의 고조화성분을 포함한 유해한 진동을 회피하는 동특성 설계가 가능하다. 향후 계속 연구사업으로서 씨일의 동특성 해석코드 개발 및 Wet Test를 통하여 본 연구결과를 검증하고 그 결과를 다단 터빈 펌프의 동특성 설게에 적용하여 고압 다단 터빈 펌프의 독자적 개발에 활용코자 한다.

  • PDF

Analysis of Safety and Mobility of Expressway Land Control System (길어깨차로제 시행에 따른 안전성 및 이동성 분석)

  • Park, Sung-ho;Lee, Yoseph;Kang, Sungkwan;Cho, Hyonbae;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.3
    • /
    • pp.1-19
    • /
    • 2021
  • The domastic hard shoulder running(HSR) System has been gradually expanding since its initial implementation in September 2007 with the aim of increasing capacity and resolving congestion. Hard Shoulder is used as a space for driver's visual comfort and a place for vehicles to evacuate in case of emergency, but it is replaced by a space for driving when the HSR System is implemented. Therefore, it was intended to determine the improvement effect before and after implementation of the HSR system through safety analysis and mobility analysis. The safety analysis analyzed the impact of traffic accidents by comparing HSR sections and similar sections. The mobility analysis was to determine the improvement effect by quantifying the speed and traffic volume changes before and after HSR System implementation. According to safety yanalysis, there is no effect of reducing traffic accidents when implementing the HSR System. In mobility analysis, the implementation of the HSR System significantly improved the speed of traffic during peak hours and significantly reduces slow and delay hours.

Analysis on the Influence and Reinforcement Effect of Adjacent Pier Structures according to the Underpass Construction (지하차도 시공에 따른 인접 교각구조물 영향 및 보강효과 분석)

  • Lee, Donghyuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.4
    • /
    • pp.29-39
    • /
    • 2022
  • In order to solve the serious traffic congestion in seoul metropolitan city, large-scale underground space development such as underpasses, deep underground roads, and GTX (Great Train eXpress) is being carried out. In order to minimize the impact of the adjacent seoul metro line A pier foundation and stability due to the construction of the underground road in Seoul, earth retaining structures were reinforced and the foundation was reinforced as well. In this study, three-dimensional finite element mehtod analysis was performed to evaluate the effect on adjacent construction and to review the stability of the underpass excavation work. The reinforcement effect was quantitatively analyzed through numerical analysis. As a result of the analysis, compared to the result of performing the existing reinforcement when overlapping CIP and ground reinforcement grouting were performed, the displacement of the earth retaining structures was reduced by more than 50%, and stress of the foundation piles were also reduced by more than 45%. Based on the analysis of the numerical analysis results, it was confirmed that the displacement of the walls of earth retaining structures during adjacent construction should be strictly controlled.

Design of Dual Mode Amplifying Block Using Frequency Doubler (주파수 체배기를 이용한 이중 모우드 증폭부 설계)

  • Kang, Sung-Min;Choi, Jae-Hong;Koo, Kyung-Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.127-132
    • /
    • 2006
  • This paper presents a dual-mode amplifier which operates as amplifier or frequency multiplier according to the input frequency. It satisfies the 802.11a/b/g frequency band of wireless LAN standard. A conventional dual-band wireless LAN transmitter consists of the separating power amplifiers operating at each frequency band, but the proposed dual-mode amplifier operates as an amplifier for the 802.11b/g signal and as a frequency multiplier for the 802.11a signal according to each LAN bias condition. The amplifier mode shows the gain of 13dB, the PldB of 17dBm and second harmonic suppression of below -37dBc. And the frequency-doubler mode shows the gain of 3.3dB, the output power of 7.3dBm and third harmonic suppression of below -50dBr.

Oil Leakage Prediction through Cut Part of Double Elastomeric Seal (이중 탄성중합체 시일의 절단부 오일누유 예측)

  • Taek-Sung Lee;Yeon-Hi Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.165-171
    • /
    • 2023
  • The rotary joint connecting the upper and lower structures of construction machinery and special vehicles transmits hydraulic pressure as the shaft and housing rotate, and multiple seals are assembled to prevent oil leakage into the oil flow channel. Because the seal material is rigid and difficult to assemble, we sought a method to assemble it after cutting. The shapes of the cutting surface are L-shaped and / shaped, and the leakage standard when hydraulic pressure is applied is the contact pressure generated on the cutting surface. The structure and material of the seal are composed of a double elastomer, and nonlinear contact structural analysis is performed when only the high-rigidity PE material is cut. Studies have shown that the shorter the cutting length, the better the leakage prevention and the higher the possibility of leakage to the bottom surface where NBR and PE come into contact rather than the top surface where the PE and the housing come into contact.