• Title/Summary/Keyword: 3중관 열교환기

Search Result 3, Processing Time 0.02 seconds

A Experimental Study on the Characteristics of Waste Heat Recovery Type Triple Heat Exchanger in the Cooling and Heating Systems (냉난방 시스템계 폐열 회수용 3중관 열교환기 특성에 관한 실험적 연구)

  • Lee, Kwang-Bae;Lee, Ho-Saeng;Moon, Chun-Geun;Kim, Jae-Dol;Yoon, Jung-In
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1091-1095
    • /
    • 2005
  • This study is performed to develop a tripple-tube exchanger which can improve the system efficiency. Three different tube diameters are compacted by one body(tripple-tube) to recover waste heat from heat exchanging among the fluids. With this, the tripple-tube shows higher cooling capacity than the double-tube after comparing between those two systems. The results of this study are basic data to design the optimum tripple-tube heat exchanger.

  • PDF

An Experimental Study on the Thermal Performance Measurement of Large Diameter Borehole Heat Exchanger(LD-BHE) for Tripe-U Pipes Spacer Apply (3중관용 스페이서를 적용한 대구경 지중열교환기의 성능측정에 관한 연구)

  • Lee, Sang-Hoon;Park, Jong-Woo;Lim, Kyoung-Bin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.581-586
    • /
    • 2009
  • Knowledge of ground thermal properties is most important for the proper design of large scale BHE(borehole heat exchanger) systems. The type, pipe size and thermal performance of the BHE is highly dependent on the ground source heatpump system-efficiency and instruction cost. Thermal response tests with mobile measurement devices were developed primarily for insitu determination of design data for large diameter BHE for triple-U spacer apply. The main purpose has been to determine insitu values of effective ground thermal conductivity and thermal resistance, including the effect of ground-water flow and natural convection in the boreholes. The test rig is set up on a some trailer, and contains a circulation pump, a inline heater, temperature sensors, flow meter, power analysis meter and a data logger for recording the temperature, fluid flow data. A constant heat power is injected into the borehole through the tripl-U pipes system of test rig and the resulting temperature change in the borehole is recorded. The recorded temperature data are analysed with a line-source model, which gives the effective insitu values of rock thermal conductivity and borehole thermal resistance of large diameter BHE for spacer apply.

  • PDF

Numerical Study of Mixed Convection Nanofluid in Horizontal Tube (수평원형관내 나노유체의 혼합대류에 관한 수치적 연구)

  • Choi, Hoon-Ki;Lim, Yun-Seung
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.8
    • /
    • pp.155-163
    • /
    • 2019
  • Laminar mixed convection of a nanofluid consists of water and $Al_2O_3$ in a horizontal circular tube has been studied numerically. Two-phase mixture model has been used to investigate hydrodynamic and thermal behaviors of the nanofluid with variables physical properties. Three dimensional Navier-Stokes, energy and volume fraction equations have been discretized using the finite volume method. The Brownian motions of nanoparticles have been considered to determine the thermal conductivity and dynamic viscosity of $Al_2O_3$-Water nanofluid, which depend on temperature. The calculated results show good agreement with the previous numerical data. Results show that in a given Reynolds number (Re), increasing solid nanoparticles volume fraction and Richardson number (Ri) increases the convective heat transfer coefficient and wall shear stress.