3차원 물체는 카메라의 시선 방향에 따라 다른 영상을 생성하므로 2차원 영상만으로 3차원 물체를 인식하는 것은 쉬운 일이 아니다. 특히 영상생성 시 강한 perspective transformation 이 발생할 경우 2차원 국소 특징을 이용하는 SIFT(Scale-Invariant Feature Transform) 알고리즘은 매칭에 활용하기 어렵다. 본 논문에서는 3차원 물체를 하나의 특정 축 중심으로 회전시키면서 얻은 복수의 영상을 학습 데이터로 활용하여 SIFT 알고리즘을 개선한 물체인식 방법을 제안한다. 이 방법은 복수 영상의 특징점들을 하나의 특징 공간으로 합성하고 그 특징점들 간의 기하학적인 제약조건을 확인하여 3차원 물체를 인식하는 방법이다. 실험에서는 알고리즘의 유용성을 먼저 확인하기 위해 조명조건과 카메라의 위치를 일정하게 유지하였다. 이 방법에 의해 SIFT 알고리즘만으로 인식이 힘들었던 3차원 물체의 다양한 외관(appearance) 인식이 가능하게 되었다.
블록 정합 기법(block matching algorithm, BMA) 중에서 가장 널리 알려진 3 단계 탐색(three-step search, 3SS) 알고리즘은 큰 움직임 추정에 적합하지만 고정된 탐색 점으로 인하여 작은 움직임 추정에는 계산 면에서 낭비가 심하고 탐색이 잘못될 경우가 대부분이다. 한편, 효율적인 3 단계 탐색(efficient three-step search, E3SS)은 중앙-편중된 움직임 추정을 작은 다이아몬드 탐색(small diamond search, SDS) 알고리즘으로 보완하여 예측성과 탐색 속도를 향상시킨 알고리즘이다. 본 논문에서는 탐색 초기 단계에서 탐색 점을 최적 배치하고 E3SS 의 SDS 알고리즘을 변형시킨 탐색 알고리즘을 제안한다. 실험 결과는 제안된 탐색 알고리즘이 E3SS 와 비교하여 평균 22% 정도 계산량을 감소시키면서도 MSE(Mean Square Error)의 성능 저하를 거의 보이지 않는 것으로 나타난다.
본 논문에서는 SIFT(Scale Invariant Feature Transform) 알고리즘을 임베디드 환경에서 실시간으로 처리하기 위해 가장 연산량이 많은 특징점 위치 결정 단계를 고정 소수점 모델로 설계 및 분석하고 그에 근거한 하드웨어 구조를 제안한다. SIFT 알고리즘은 객체의 꼭지점이나 모서리와 같이 색상 성분의 차가 심한 구역에서 얻어진 특징점 주위 픽셀의 벡터성분을 추출하는 알고리즘으로, 현재 얼굴인식, 3차원 객체 인식, 파노라마, 3차원 영상 복원 작업의 핵심 알고리즘으로 연구 되고 있다. 본 알고리즘에 대한 최적의 하드웨어 구현을 위해 특징점 위치(Keypoint Localization)와 방향(Orient Assignment)에 대한 정확도, 오차율을 사용하여 고정 소수점 모델에서 각 중요 변수들의 비트 크기를 결정 한다. 얻어진 고정 소수점 모델은 원래의 부동 소수점 모델과 비교했을 때 정확도 93.57%, 오차율 2.72%의 결과를 보이며, 고정 소수점 모델은 부동 소수점 모델과 비교하여 제거된 특징점의 대부분이 두 영상에서 추출된 특징점 끼리의 매칭과정에서 불필요한 객체의 모서리 영역에 몰려있음을 확인했다. 고정 소수점 모델링 결과 ARM 400MHz 환경에서 약 3시간, Pentium Core2Duo 2.13GHz 환경에서 약 15초의 연산시간을 갖는 부동 소수점 모델이 동일한 환경에서 약 1시간과 10초의 연산시간을 가지며, 최적화된 고정 소수점 모델을 하드웨어로 구현 시 $10{\sim}15\;frame/sec$의 성능을 보일 것으로 예상한다.
본 논문에서는 특징점 정합을 통한 객체인식, 파노라마 이미지 생성, 3차원 영상 복원 등에 사용될 수 있는 알고리즘 중 대표적인 SURF 알고리즘 기반 특징점 추출기의 하드웨어 구조 설계 및 FPGA 검증 결과에 대해 기술한다. SURF 알고리즘은 크기와 회전변화에 강한 특징점과 서술자를 생성함으로써 객체인식, 파노라마 이미지 생성, 3차원 영상 복원 등에 활용될 수 있다. 하지만 ARMl1(667Mhz) 프로세서와 128Mbytes의 DDR 메모리를 사용하는 임베디드 환경에서 실험결과 VGA($640{\times}480$) 해상도 C영상의 특정점 추출 처리 시약 7,200msec의 시간이 걸려 실시간 동작이 불가능한 것으로 파악되었다. 본 논문에서는 SURF 알고리즘의 핵심 요소인 적분 이미지 메모리 접근 패턴을 분석하여 메모리 접근 횟수와 메모리 사용량을 줄이는 방법을 이용해 실시간 동작이 가능하도록 하드웨어로 설계하였다. 설계된 하드웨어를 Xilinx(社)의 Vertex-5 FPGA 를 이용하여 검증한 결과 l00Mhz 클록에서 VGA 영상의 특징점 추출시 약 60frame/sec로 동작하여 실시간 응용으로 충분함을 알 수 있다.
영상 내 직선을 검출하는 대표적인 알고리즘인 허프변환은 실세계 영상들에 적용할 때 그들의 복잡한 배경이나 잡음에 의해 생성되는 방대한 특징점들 때문에 상당한 계산량을 필요로 하고 쉽게 의사 직선을 검출한다. 본 논문은 기존 허프변환에 특징점의 유효성을 평가하는 전처리를 추가한 개선된 허프변환을 제안한다. 특징점 평가는 $3{\times}3$ 블록 특징점들의 패턴을 이용해 직선 검출에 필수적이지 않은 많은 특징점들을 제거할 수 있다. 다양한 영상을 대상으로 한 실험들에서 제안된 알고리즘은 영상에 따라 특징점들의 14%~58%를 제거하여 계산량을 줄여줄 뿐만 아니라 유효 직선 검출에서도 기존 알고리즘보다 우수함을 보여준다.
最適 設計를 위한 최적치 탐색 알고리즘으로 직접 탐색법의 일종인 3점 탐색 알고리즘을 제안하였다. 본 알고리즘은 N차원 탐색 범위 내에 있는 수공간의 3N 점에서 함수의 최소차를 탐색하고 점차로 탐색 범위를 축소하여 동일한 타색과정을 반복수행하는 방법이다. 그러므로, 1회 탐색시에 성능 지표의 계산횟수는 3N이다. 도한 3N점 탐색법을 대산히나 3N점에 대한 탐색법으로 단순 3N탐색법을 기술하였으나, 이것은 서로 다른 매개 변수가 乘서항을 갖는 성능지표의 경우에는 불확실함이 발견되었다. 제안된 알고리즘은 2차 형식이나 선형함수로 구성되는 성능 지표에 적용이 가능하며, 안정하고 신회도가 높은 특성을 갖고 있음이 확인되었다.
본 논문은 수평을 유지하여 촬영해야 한다는 기존 이미지 스티칭을 이용한 영상 정합 과정의 단점을 극복하기 위하여, 스마트폰의 가속도 센서와 자기장 센서 데이터를 사용하여 3가지 자유도(3 DoF)에 강인한 이미지 스티칭 방법을 제안한다. 이미지를 붙이는 작업인 이미지 스티칭은 크게 이미지 특징점 추출, 추출된 특징점에서 매칭에 필요한 참인 점(inlier)을 선별, 참인 점을 호모그래피(homography) 행렬로 변환, 호모그래피 행렬을 사용하여 이미지를 왜곡(warping), 왜곡된 이미지와 다른 이미지를 합하는 과정으로 이루어져 있다. 본 논문에서는 일반적으로 사용하는 SIFT, SURF 등의 알고리즘뿐만 아니라 MPEG에서 표준화한 MPEG-7 CDVS(Compact Descriptor for Visual Search) 표준의 특징점 추출 알고리즘을 사용하여 이미지의 특징점을 추출한다. 또한 각 알고리즘의 특징점 추출시간, 추출된 특징점 개수, 선별된 참인 점의 개수를 비교하고, 스티칭 정확도를 판단하여 본 연구에서 활용한 데이터에 어느 알고리즘이 효율적인지 살펴본다.
본 논문은 Scale Invariant Feature Transform(SIFT)알고리즘으로부터 얻어진 로컬 특징점으로부터 물체를 인식하는 방법에 대하여 논하였다. SIFT알고리즘은 물체의 스케일, 회전에 강인하고, 또한 3차원 시점의 변화에도 부분적으로 강인한 특징점을 추출한다. SIFT 알고리즘은 입력영상에 크기가 다른 가우시안 함수를 적용하고, 블러링된 영상들의 차 영상에서 극값을 추출하여 특징점으로 사용한다. 하지만 SIFT알고리즘에서 가우시안 함수를 적용하는 것은 상당히 많은 연산을 필요로 하기 때문에 본 논문에서는 하나의 옥타브를 사용하여 연산시간을 단축하였다. 하나의 옥타브를 사용함으로써 물체의 스케일이 크게 변하였을 때는 문제가 발생한다. 이를 해결하기 위하여 대상 물체의 작은 스케일, 큰 스케일에서 추출된 특징점을 혼합하여 DB를 생성하였다.
단말기 기술의 향상으로 과거 다시점 영상 디스플레이가 어려웠지만 현재는 다양한 3D 디스플레이 장치가 개발되고 있으며 2장의 영상을 활용한 스테레오 영상 단말 뿐 아니라 다시점 영상 단말도 개발되고 있다. 다시점 방송 및 콘텐츠를 이용하기 위한 장치는 사용자가 콘텐츠를 감상하는 거리, 각도 및 개개인의 취향에 따라 각기 다른 실감정도를 보여주고 있으며 단말 장치 및 사용자는 끊임없이 움직이게 되므로 이에 대한 대처가 필요하다. 본 논문에서는 사용자의 위치를 파악한 후 그 결과에 따라서 단말장치에서 연속적으로 사용자에게 적절한 깊이 정보를 송출하기 위한 알고리즘을 개발하였다. 사용자의 얼굴 및 눈을 검출하였으며 기존 알고리즘의 문제점인 눈이 아닌 눈썹 또는 눈 주변의 어두운 영역으로 인한 오인식의 문제점을 해결하였다. 눈썹의 위치를 인식하여 눈썹 영역과 눈 영역의 분리를 통한 정확한 눈 위치추적 알고리즘 결과 테스트스트림에 따라 최대 52%의 오차율 향상을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.