• Title/Summary/Keyword: 3점 근사화

Search Result 55, Processing Time 0.027 seconds

Real-time Video Based Relighting Technology for Moving Object (움직이는 오브젝트를 위한 실시간 비디오기반 재조명 기술 -비주얼 헐 오브젝트를 이용한 실시간 영상기반 재조명 기술)

  • Ryu, Sae-Woon;Lee, Sang-Hwa;Park, Jong-Il
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.433-438
    • /
    • 2008
  • 본 논문은 비주얼 헐 오브젝트를 이용한 움직이는 오브젝트에 대한 실시간 영상기반 라이팅 기술을 제안한다. 본 논문에서는 특히 서로 다른 공간상의 조명 환경을 일치시키는 기술에 중점을 두고, 실시간으로 움직이는 오브젝트의 실시간 비디오 기반 재조명 기술로서 3가지 핵심 내용을 소개한다. 첫째는 비주얼 헐 데이터를 기반으로 기존에 벡터의 외적을 사용하던 방법을 개선하여 수식을 근사화시켜 연산량을 줄여서 고속으로 노말 벡터를 추출하는 방법이고, 둘째는 사용자 주변 조명 환경 정보를 효과적으로 샘플링하여 라이팅에 사용하는 점광원의 개수를 줄였으며, 세 번째는 CPU와 GPU의 연산량을 분배하여 효과적으로 병렬 고속 연산이 가능하도록 하였다. 종래의 영상기반 라이팅 기술이 정지된 환경맵 영상을 사용하거나 정지된 객체를 라이팅하였던 연구를 한 반면에 본 논문은 실시간에서 라이팅을 구현하기 위한 기술로서 고속 라이팅 연산을 위한 방법을 제시하고 있다. 본 연구의 결과를 이용하면 영상기반 라이팅 연구의 실제적이고도 폭넓은 작용이 가능할 것으로 사료되며 고화질의 콘텐츠 양산에도 기여할 것으로 사료된다.

  • PDF

Adaptive Neural Control of Nonlinear Pure-feedback Systems (완전궤환 비선형 계통에 대한 적응 신경망 제어기)

  • Park, Jang-Hyun;Kim, Seong-Hwan;Chang, Young-Hak
    • Journal of IKEEE
    • /
    • v.14 no.3
    • /
    • pp.182-189
    • /
    • 2010
  • A new Adaptive neural state-feedback controller for the fully nonaffine pure-feedback nonlinear system are presented in this paper. By reformulating the original pure-feedback system to a standard normal form with respect to newly defined state variables, the proposed controller requires no backstepping design procedure. Avoiding backstepping makes the controller structure and stability analysis considerably simple. The proposed controller employs only one neural network to approximate unknown ideal controllers, which highlights the simplicity of the proposed neural controller. Simulation examples demonstrate the efficiency and performance of the proposed approach.

A Mixture Model in SBDC Contingent Valuation (CVM모형에서의 영의 응답자료 처리 - 혼합모형을 이용하여 -)

  • Cho, Seung-Kuk;Kwak, Seung-Jun;Yoo, Seung-Hoon
    • Environmental and Resource Economics Review
    • /
    • v.12 no.3
    • /
    • pp.453-467
    • /
    • 2003
  • Approximating a WTP distribution of the conservation for Hallyue Marine National Park is complicated by zero observations in the sample. To deal with the zero observations, a mixture model is considered to allow a point mass at zero. The model is empirically verified for the data. The conventional model and a spike model are also considered for comparison. Our results portrays the usefulness of the mixture model to analyze SBDC data with zero observations.

  • PDF

A Study on the Pattern Recognition based Distance Protective Relaying Scheme in Power System (전력계통의 패턴인식형 거리계전기법에 관한 연구)

  • 이복구;윤석무;박철원;신명철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.9-20
    • /
    • 1998
  • In this paper, a new distance relaying scheme is proposed. Artificial neural networks are applied to the distance relaying system composed of pattern recognition based. The proposed distance relaying scheme has two blocks of pattern recognition stages to estimate the fundamental frequency and to classify the fault types. In the first block, a filtering method using neural networks called a neural networks mapping filter(NMF) is presented to efficiently extract the features. And in the sec'ond block, the estimator called neural networks fault pattern estimator(NFPE) is also presented to classify the fault types by the extracted effective features obtained from NMF. Each block of these applied schemes is trained by back-propagation algorithm of multilayer perceptron and show the fast and accurate pattern recognition by ability of multilayer neural networks. The test result of this approach are obtained the good performance from the fault transient wave signals of EMTP(e1ectromagnetic transients program) in the various fault conditions of power systems.

  • PDF

Calibrating Stereoscopic 3D Position Measurement Systems Using Artificial Neural Nets (3차원 위치측정을 위한 스테레오 카메라 시스템의 인공 신경망을 이용한 보정)

  • Do, Yong-Tae;Lee, Dae-Sik;Yoo, Seog-Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.418-425
    • /
    • 1998
  • Stereo cameras are the most widely used sensing systems for automated machines including robots to interact with their three-dimensional(3D) working environments. The position of a target point in the 3D world coordinates can be measured by the use of stereo cameras and the camera calibration is an important preliminary step for the task. Existing camera calibration techniques can be classified into two large categories - linear and nonlinear techniques. While linear techniques are simple but somewhat inaccurate, the nonlinear ones require a modeling process to compensate for the lens distortion and a rather complicated procedure to solve the nonlinear equations. In this paper, a method employing a neural network for the calibration problem is described for tackling the problems arisen when existing techniques are applied and the results are reported. Particularly, it is shown experimentally that by utilizing the function approximation capability of multi-layer neural networks trained by the back-propagation(BP) algorithm to learn the error pattern of a linear technique, the measurement accuracy can be simply and efficiently increased.

  • PDF

Automatic Generation of 3D Face Model from Trinocular Images (Trinocular 영상을 이용한 3D 얼굴 모델 자동 생성)

  • Yi, Kwang-Do;Ahn, Sang-Chul;Kwon, Yong-Moo;Ko, Han-Seok;Kim, Hyoung-Gon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.7
    • /
    • pp.104-115
    • /
    • 1999
  • This paper proposes an efficient method for 3D modeling of a human face from trinocular images by reconstructing face surface using range data. By using a trinocular camera system, we mitigated the tradeoff between the occlusion problem and the range resolution limitation which is the critical limitation in binocular camera system. We also propose an MPC_MBS (Matching Pixel Count Multiple Baseline Stereo) area-based matching method to reduce boundary overreach phenomenon and to improve both of accuracy and precision in matching. In this method, the computing time can be reduced significantly by removing the redundancies. In the model generation sub-pixel accurate surface data are achieved by 2D interpolation of disparity values, and are sampled to make regular triangular meshes. The data size of the triangular mesh model can be controlled by merging the vertices that lie on the same plane within user defined error threshold.

  • PDF

Direct Reconstruction of Displaced Subdivision Mesh from Unorganized 3D Points (연결정보가 없는 3차원 점으로부터 차이분할메쉬 직접 복원)

  • Jung, Won-Ki;Kim, Chang-Heon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.6
    • /
    • pp.307-317
    • /
    • 2002
  • In this paper we propose a new mesh reconstruction scheme that produces a displaced subdivision surface directly from unorganized points. The displaced subdivision surface is a new mesh representation that defines a detailed mesh with a displacement map over a smooth domain surface, but original displaced subdivision surface algorithm needs an explicit polygonal mesh since it is not a mesh reconstruction algorithm but a mesh conversion (remeshing) algorithm. The main idea of our approach is that we sample surface detail from unorganized points without any topological information. For this, we predict a virtual triangular face from unorganized points for each sampling ray from a parameteric domain surface. Direct displaced subdivision surface reconstruction from unorganized points has much importance since the output of this algorithm has several important properties: It has compact mesh representation since most vertices can be represented by only a scalar value. Underlying structure of it is piecewise regular so it ran be easily transformed into a multiresolution mesh. Smoothness after mesh deformation is automatically preserved. We avoid time-consuming global energy optimization by employing the input data dependant mesh smoothing, so we can get a good quality displaced subdivision surface quickly.

Semi-automatic Building Area Extraction based on Improved Snake Model (개선된 스네이크 모텔에 기반한 반자동 건물 영역 추출)

  • Park, Hyun-Ju;Gwun, Ou-Bong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Terrain, building location and area, and building shape information is in need of implementing 3D map. This paper proposes a method of extracting a building area by an improved semi-automatic snake algorithm. The method consists of 3-stage: pre-processing, initializing control points, and applying an improved snake algorithm. In the first stage, after transforming a satellite image to a gray image and detecting the approximate edge of the gray image, the method combines the gray image and the edge. In the second stage, the user looks for the center point of a building and the system sets the circular or rectangular initial control points by an procedural method. In the third stage, the enhanced snake algorithm extracts the building area. In particular, this paper sets the one tenn of the snake in a new way in order to use the proposed method for specializing building area extraction. Finally, this paper evaluated the performance of the proposed method using sky view satellite image and it showed that the matching percentage to the exact building area is 75%.

Trimmed NURBS surface tessellation with sharp shape constraint (Sharp Shape를 유지하는 trimmed NURBS 곡면의 삼각화 방법)

  • Cho, Doo-Yeoun;Kim, In-Ill;Lee, Kyu-Yeul;Kim, Tae-Wan
    • Journal of Korea Game Society
    • /
    • v.2 no.1
    • /
    • pp.62-68
    • /
    • 2002
  • This paper presents a method for tessellating trimmed NURBS surface with preserving sharp shape Although several existing approaches need a large number of triangular meshes to represent sharp shape of surface, resulting triangular meshes may not reflect sharp edges properly. In this study, we flit detect the sharp shape of NURBS surface automatically using C1 continuous condition and then use constraint Delaunay triangulation method to present exact sharp shape with the minimum triangular meshes. And we also use approximated developed surface domain as triangulation domain of rimmed NURBS surface. In this way, the shape of triangular elements on the triangular domains is approximately preserved and can avoid distortion when mapped into three-dimensional space. finally, we show examples that demonstrate the effectiveness of the proposed scheme in terms of reducing the number of triangular meshes and preserving sharp shape of surface more exactly.

  • PDF

Performance Analysis on Various Design Issues of Turbo Decoder (다양한 Design Issue에 대한 터보 디코더의 성능분석)

  • Park Taegeun;Kim Kiwhan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12A
    • /
    • pp.1387-1395
    • /
    • 2004
  • Turbo decoder inherently requires large memory and intensive hardware complexity due to iterative decoding, despite of excellent decoding efficiency. To decrease the memory space and reduce hardware complexity, various design issues have to be discussed. In this paper, various design issues on Turbo decoder are investigated and the tradeoffs between the hardware complexity and the performance are analyzed. Through the various simulations on the fixed-length analysis, we decided 5-bits for the received data, 6-bits for a priori information, and 7-bits for the quantization state metric, so the performance gets close to that of infinite precision. The MAX operation which is the main function of Log-MAP decoding algorithm is analyzed and the error correction term for MAX* operation can be efficiently implemented with very small hardware overhead. The size of the sliding window was decided as 32 to reduce the state metric memory space and to achieve an acceptable BER.