• 제목/요약/키워드: 3분력 로드셀

검색결과 5건 처리시간 0.018초

정밀 3분력(Fz, Fy, Mz) 로드셀의 설계 및 변형률해석 (Design and Strain Analysis of Precision 3-component Load Cell)

  • 김갑순;이세헌;엄기원
    • 한국정밀공학회지
    • /
    • 제16권3호통권96호
    • /
    • pp.222-232
    • /
    • 1999
  • This paper describes the development of a precision 3-component load cell with plate beams which may be used for measuring forces Fx, Fy and moment Mz simultaneously in industry. We have derived equations to predict the bending strains on the surface of the beams under forces or moment. We have also determined the attachment location of strain gages of each sensor and fabricated 3-component load cell. To evaluate the rated strain and interference error of each sensor, we have carried out characteristic test of precision 3-component load cell. It reveals that the rated strain calculated from the derived equations are good agreement with the results from Finite Element Method analysis.

  • PDF

볼트의 체결 강성이 추력 시험대에 미치는 영향 (The Effect of the Bolted Joint Stiffness on the Thrust Measurement Stand)

  • 이규준;정치훈;안동찬
    • 한국추진공학회지
    • /
    • 제20권5호
    • /
    • pp.31-39
    • /
    • 2016
  • 본 논문은 볼트 체결 강성이 추력 시험대에 미치는 영향을 연구한 것이다. 추력 시험대는 추진기관의 추력 성능을 평가하는 장비로 추력, 피치력, 요력(3 분력) 작용선에 대응하는 3 분력 계측선간의 평행도와 3 분력 계측선의 상호 직각도가 다분력 추력시험대의 성능을 좌우한다. 따라서 시험대의 초기 형상을 작동 상태에서 유지시키는 것이 추력 시험대의 핵심 기능이다. 본 논문에서는 추력 시험대의 볼트 체결과 로드셀 트레인의 나사 체결의 공차 정확도가 추력 시험대에 미치는 현상을 규명하고 이를 극복하는 방안을 제시하였다.

고체 추진기관 6분력 시험대의 모델링 기법 (Modeling Scheme for the Six-components Force Measurements of Solid-propellant Rocket Motors)

  • 박익수;이규준;윤일선;김중근
    • 한국추진공학회지
    • /
    • 제5권3호
    • /
    • pp.79-86
    • /
    • 2001
  • 6분력 시험대는 추력 벡터 제어 방식 추진기관의 성능지수를 측정하는 시험 장비이다 본 논문은 6분력 시험대의 개념 설계 및 시험 분석 단계에서 가장 중요한 요소 중 하나인 시험대의 모델링 기법에 대한 연구로 기존 운용중인 시험대에도 적용이 가능한 우수한 모델을 제시하였다. 제안된 모델은 모델 매개변수 결정과정에 최소 자승법을 이용하였으며, 계측용 로드셀의 수량 결정과 시험대의 형상설계 과정에서 발생되는 제약조건을 크게 완화할 수 있었다. 그 결과 정확도, 운용성 구조적 안전성을 크게 높인 시험대 설계를 가능하게 하였다. 교정 및 연소 시험에 적용한 결과 기존 접근방법 보다 훨씬 우수한 정확도를 보였다.

  • PDF

병렬판구조를 이용한 3분력 로드셀 감지부의 설계 (Design of sensing element for 3-component load cell using parallel plate structure)

  • 김갑순;강대임;정수연;주진원
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1871-1884
    • /
    • 1997
  • This paper describes the design process of a 3-component load cell with a multiple parallel plate structure which may be used to measure transverse forces and twisting moment simultaneously. Also we have derived equations to predict the bending strains on the surface of the beams in the multiple parallel plate structure under transverse force or twisting moment. It reveals that the bending strains calculated from the derived equations are in good agreement with the results from finite element analysis and experiment. Also we have evaluated the rated output and interference error of each component, which can be efficiently used to design a 3-component load cell with a multiple parallel plate structure.

3축 분력 측정이 가능한 대형 공구동력계 개발 (Development of Large-scale Tool Dynamometer for Measuring Three-axis Individual Force)

  • 김중선;왕덕현
    • 한국기계가공학회지
    • /
    • 제18권5호
    • /
    • pp.29-36
    • /
    • 2019
  • In modern society in which the fourth industrial revolution has come to the fore and rapid technology innovations are taking place, a phenomenon of making and selling small quantities of various products that consumers want instead of mass producing one item has emerged. As the market is moving toward the multi-item small-sized production system, there is a need for a system in which a machine independently judges and carries out machining and post-processing. In order for a machine to judge processing on its own, it is necessary to measure the force applied to a product. This study aimed to develop a large-scale dynamometer that enables three-axis measurement using octagonal ring load cells. As for the device's configuration, four octagonal ring load cells, which were previously researched, were used to enable three-axis measurement. It was reconfigured by modifying the attachment position of the octagonal ring load cells' strain gauge and the Wheatstone bridge of each axis, and a system was set up to allow the monitoring of data measured through the monitor. The configured device calculated a strain rate by an experiment, and this rate was compared with the theoretical strain rate to find a correction value. The correction value was entered into a formula, deriving a modified formula. The modified formula was entered into the device, which completed the large-scale dynamometer.