• Title/Summary/Keyword: 3결정 태양전지

Search Result 302, Processing Time 0.042 seconds

Electrical Characterization of c-Si Solar Cell with Various Emitter Layer

  • Park, Jeong-Eun;Byeon, Seong-Gyun;Lee, Yeong-Min;Park, Jun-Seok;Lee, Min-Ji;Im, Dong-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.413-413
    • /
    • 2016
  • 태양전지 제작 시 에미터층을 형성하는 도핑 공정의 최적화는 캐리어 수집 확률 증가와 함께 결정질 실리콘 태양전지 고효율화를 위해 매우 중요하다. 본 연구에서는 결정질 실리콘 태양전지 다이오드의 다양한 도핑 공정으로 제작된 p-n 접합에 대한 전기적 특성 분석을 진행하였다. 도핑 공정의 경우 선 증착-후 확산 공정 시간과 가스량을 변화시켜 다양한 에미터층을 제작하였다. 선 증착 시간 변화를 주는 경우 선 증착 공정을 $825^{\circ}C$로 고정한 뒤 시간을 7분에서 17분까지 변화하고 후 확산 공정을 $845^{\circ}C$, 14분으로 고정하였다. 후 확산 시간 변화를 주는 경우는 선 증착 공정을 $825^{\circ}C$, 12분으로 고정한 뒤 후 확산 공정을 $845^{\circ}C$로 고정 하고 시간을 9분에서 19분까지 변화시켰다. 선 증착 공정을 $845^{\circ}C$ 12분, 후 확산 공정을 $845^{\circ}C$, 14분으로 고정 한 뒤 선 증착 시 POCl3양을 400 ~ 1400 SCCM까지 변화시켰고, 후 확산 시 산소량을 0 ~ 1000 SCCM까지 가변한 조건에서 에미터층에 대한 특성을 분석하였다. 결과적으로 선 증착 공정 $825^{\circ}C$ 12분, 후 확산 공정 $845^{\circ}C$ 14분에서 SCR(Space Charge Region)에서 3.81의 가장 낮은 이상 계수 값을 나타내었다. 이는 p-n접합의 내부결함이 줄어들어 태양전지의 캐리어 수명이 증가됨을 보였다. 선 증착 공정 중 $POCl_3$ 주입량 800 SCCM, 후 확산 공정 중 산소량 400 SCCM에서 $15.9{\mu}s$로 가장 높은 캐리어 수명을 나타내었다. Suns-VOC 측정 결과 $POCl_3$ 주입량 800 SCCM, 산소량 400 SCCM에서 619mV로 가장 높은 개방전압을 얻을 수 있었다.

  • PDF

유기태양전지에서 후열처리 온도에 따른 광흡수층의 특성 변화

  • Kim, Dong-Yeong;Seo, Seong-Bo;Lee, Hye-Ji;Bae, Gang;Son, Seon-Yeong;Park, Seung-Hwan;Kim, Hwa-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.385-385
    • /
    • 2011
  • Si 또는 반도체 화합물을 기반으로 한 태양전지의 높은 원재료 가격과 복잡한 공정 등의 문제점들을 해결하기 위한 방안으로 반도체성 고분자인 Poly(3-hexylthiophene)(P3HT)과 C60 유도체인 PCBM을 광활성 층으로 이용하여 유기 태양전지(Organic Solar Cell, OSC)를 제작하였다. 하지만 상대적으로 낮은 효율을 갖는 OSC의 단점을 해결하기 위해서 유기물 자체가 갖고 있는 광 안정성, 낮은 전하 이동도 및 광 에너지 흡수대 등의 문제점들의 해결 방안들이 제시되고 있다. 본 연구에서는 광활성 층을 사용한 유기 태양전지의 특성에서 후열처리에 따른 유기 태양전지의 전기적 및 구조적, 광학적인 특성들이 소자의 효율에 끼치는 영향에 대해 분석하였다. 후열 처리 온도에 따른 광활성 층의 구조적인 특성을 분석하기 위해 EFM 이미지와 XRD패턴을 측정하였는데 열처리 후 박막의 전기적인 포텐셜과 결정성 향상의 유기 태양전지의 효율향상에 기여함을 알 수 있었다. 또한 임피던스 분석 장치를 이용해 후열 처리에 따른 소자의 Resistance, Capacitance, I-V 곡선들을 분석한 결과 최적의 조건에서 열처리된 광활성 층은 전하들의 이동을 조절하여 소자 내에서 Capacitance를 증가시키는 것 뿐만 아니라 전극과 유기물 층 사이의 계면 특성을 향상시킴으로써, 소자의 효율을 증가시키는 원인으로 작용함을 확인 하였다.

  • PDF

표면 Texture 및 나노 Particle 공정에 의한 III-V 태양전지의 효율 변화

  • Sin, Hyeon-Uk;O, Si-Deok;Lee, Se-Won;Choe, Jeong-U;Sin, Jae-Cheol;Kim, Hyo-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.320-320
    • /
    • 2012
  • III-V 화합물 태양전지는 실리콘, CdTe, CIGS, 염료, 및 유기 등 다른 태양전지에 비해 1sun 상 30% 이상의 고효율을 갖고 있고 앞으로도 계속 증가할 수 있는 가능성을 갖고 있다. 그 이유는 직접천이형 밴드갭, 높은 이동도 등의 고성능 물질특성과 더불어 3족과 5족의 비율을 조절함으로써 같은 결정구조를 갖고 에너지 밴드갭이 다른 물질들을 만들기에 용의하여, 태양전지 스펙트럼의 넓은 영역을 흡수할 수 있는 장점이 있기 때문이다. 그러나, 셀자체의 물질이 실리콘에 비하여 고가이므로, 고성능이 요구되는 우주 인공위성등에 적용이 되었지만, 2000년대 이후로 집광에 적용가능한 태양전지의 연구를 거듭하여 2005년부터는 값싼 프레넬 렌즈를 이용하여 1sun에 비해 500배 해당하는 빛을 셀에 집광하여 보다 효율을 증가시킴으로써 지상발전용에도 적용가능한 셀을 형성하게 되었다. 더불어 태양전지의 효율을 증가시키기 위한 개선된 구조적 변화의 시도도 많이 이루어지고 있다. 최근 보고에 의하면 실리콘 태양전지의 표면에 texture 또는 나노 구조를 주어 높은 흡수율과 낮은 반사율을 갖게 함으로써 효율을 증가시키는 사례가 많아지고, III-V 화합물 태양전지도 texturing에 의해 증가된 효율을 발표한바 있다. 본 연구에서는 태양전지의 효율을 증가시키기 위하여 III-V 화합물 태양전지 표면에 micro-hole array texture 구조를 형성한 후 나노 particle을 이용한 나노 texture 구조를 형성하였다. Photo-lithography와 chemical wet etching으로 micro-hole array texture 구조를 형성하였으며 micro-hole의 직경은 $5{\sim}20{\mu}m$, hole과 hole의 간격은 $3{\sim}15{\mu}m$로 다양하게 변화를 주었다. 형성된 micro-hole array texture 구조위에 수십 nm 크기의 particle을 만들어 chemical wet etching으로 나노 texture 구조를 형성하였다. 태양전지 표면에 texture 구조가 있는 경우와 없는 경우에 각각 효율을 측정, 비교 분석하였다.

  • PDF

A study on property of using $ALU^+$ for firing in crystalline silicon solar cell ($ALU^+$를 이용한 결정질 태양전지 소성에 따른 특성 연구)

  • Song, Kyuwan;Jang, Juyeon;Yi, Junsin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.123.2-123.2
    • /
    • 2011
  • $ALU^+$ 태양전지는 PN접합을 후면에서 즉, Al을 소성하여 형성시키기 때문에 얼마나 균일하고 두껍게 형성하는 것이 가장 중요하다. 소성(Firing)은 태양전지 제조 과정에서 후면의 접촉을 위한 중요한 공정이다. 본 연구에서는 상업화가 가능한 n-type $ALU^+$ Emitter 태양전지에서 소성 횟수에 따른 특성을 연구 하였다. $ALU^+$ emitter 형성의 최적화를 위해 소성온도를 가변하고, 최적화된 온도에서 소성 횟수에 따른 DIV 측정을 통해 셀을 분석 하였다. 소성 횟수는 1~3회로 하였고, 그 결과 단락전류 밀도(Jsc)가 33.57mA/$cm^2$로 처음보다 15.1%증가 하였고, 곡선인자(Fill Factor)는 3회에서 66.04%로 218%증가 하였다. Al을 짧은 시간 안에 소성을 시키므로 해서 후면의 $P^+$ Emitter가 균일하게 형성되었기 때문에 개방전압(Voc)의 증가를 확인하였다. 본 연구를 통해 $ALU^+$ 태양전지의 후면 Aluminium 소성 조건의 최적화를 통하여 $ALU^+$ emitter가 충분히 형성되지 못하면 누설전류가 발생되고 직렬저항(Rs)이 크게 증가하여 개방전압(Voc) 및 단락전류밀도(Jsc)의 감소가 발생하게 되고, 직렬저항(Rs)의 증가와 병렬저항(Rsh)의 감소는 Fill Factor의 급격한 감소를 초래하게 됨을 알 수 있다. 이를 개선하면 태양전지 효율을 상승시키는 결과를 얻을 수 있음을 확인하였다.

  • PDF

Optimization of microcrystaliline silicon thin film solar cells using simulation (i-layer 두께와 back reflect layer 유무가 미세결정 실리콘 박막태양전지에 미치는 영향)

  • Park, Seung-Man;Lee, Young-Suk;Jung, Sung-Wook;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.437-437
    • /
    • 2009
  • 현재 상용화되어 있는 결정질 태양전지의 경우 높은 실리콘 가격으로 인해 저가화에 어려움을 격고 있다. 따라서 태양전지 저가화의 한 방법으로 박막태양전지가 주목을 받고 있다. P-I-N 구조의 박막태양전지에서 I-layer 각 층의 thickness, activation energy, energy bandgap은 고효율 달성을 위한 중요한 요소이다. 본 논문에서는 박막태양전지 P-I-N layer의 가변을 통하여 고효율을 달성하기 위한 simulation을 수행하였다. 가변 조건으로는 p-layer의 thickness, activation energy 그리고 energy bandgap을 단계별로 변화시켰고 i-layer는 thickness를 n-layer는 thickness와 activation energy를 가변하여 최적의 조건을 찾아 분석하였다. 최종 simulation 결과 p-layer의 thickness 5nm, activation energy 0.3eV 그리고 energy bandgap 1.8eV에서, i-layer thickness 400nm, n-layer thickness 30nm, activation energy 0.2eV에서 최고 효율 11.08%를 달성하였다.

  • PDF

Co-sputtering법으로 제작된 화합물 반도체 박막형 태양전지에서 $CuInSe_2$(CIS) 광흡수층의 열처리 효과

  • Kim, Hae-Jin;Lee, Hye-Ji;Son, Seon-Yeong;Park, Seung-Hwan;Kim, Hwa-Min;Hong, Jae-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.269-269
    • /
    • 2010
  • 현재 화석연료의 부족으로 인한 에너지 수급의 불균형, 자연환경의 파괴로 인해 대체에너지 개발이 절실히 요구되고 있다. 이러한 문제점을 극복하기 위한 방안으로 태양전지에 대한 관심이 높아지고 있다. 기존 결정형 실리콘 태양전지와 비교해 화합물 반도체를 기반으로 한 박막형 태양전지는 친환경적인 제품이면서 제조원가를 절감시킬 수 있고, 반영구적인 수명 및 값싼 기판을 활용할 수 있는 장점으로 인해 활발한 연구가 진행되고 있다. 본 실험에서는 Co-sputtering법으로 제작된 $CuInSe_2$(CIS)를 광활성층으로 한 박막형 태양전지에서 실온 ${\sim}550^{\circ}C$의 다양한 온도에서 후열 처리된 CIS 박막들의 전기적, 구조적, 광학적인 특성들을 분석하였다. 제작된 박막들 가운데 Hall Effect 측정결과 $550^{\circ}C$에서 후열 처리된 박막이 가장 높은 1.227E+22(/$cm^3$)의 캐리어 농도와 1.581(cm/$V{\cdot}s$)의 홀 이동도를 가지며, 3.092E-4(${\Omega}{\cdot}cm$)의 가장 낮은 비저항 값을 갖는 것으로 나타났다. EFM 측정결과 열처리 하지 않은 박막에 비해 후열처리된 CIS 박막의 전도성이 전체적으로 높아졌다. 특히, $550^{\circ}C$에서 후열 처리된 박막의 표면은 전체적으로 전기 전도성이 높은 결정립들이 골고루 분포하며 가장 높은 표면 포텐셜 에너지 값을 갖는 것으로 나타났다. 박막들의 구조적 특성을 분석하기 위해 SEM과 XRD를 측정한 결과, $350^{\circ}C$에서 후열 처리된 박막들은 열처리 되지 않은 박막과 비교해 표면형상 변화가 일어났으며, $550^{\circ}C$에서 후열 처리된 CIS 박막들은 $CuInSe_2$(112) 방향이 향상된 chalcopyrite-like 구조를 가지면서 박막 밀도가 높고 결정립의 크기가 증가된 것을 확인하였다. 이는 박막 성장시 기판온도의 상승으로 CIS 박막 내에서 셀레늄의 확산과 상호작용으로 3원 화합물이 재결정화되어 구조적인 특성향상에 기여하였기 때문이다. 결론적으로 본 연구는 CIS 광활성층에서 후열 처리의 효과들 뿐만아니라 박막 증착시 co-sputtering법을 이용함으로써 증착시간의 감소 및 대면적화와 대량생산으로도 적용 가능함을 제시하고자 한다.

  • PDF

전구체 박막 증착법을 이용한 CuInSe2 박막 합성 및 결정화 메커니즘 분석

  • Lee, Dong-Uk;Choe, Yeong-U;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.367-367
    • /
    • 2011
  • 태양전지에서 광흡수층으로 널리 쓰이는 CuInSe2은 전기적, 광학적 특성이 우수하고 20%대의 고효율을 기록하며 큰 관심을 받고 있다. 하지만 증발법 및 스퍼터링 등의 기존 진공, 고온 기반 공정 기술은 원천적인 공정비용 절감이 어렵고, 고가의 희귀원소인 In 등의 원료 활용도가 떨어져 실험실 수준에 머무르고 있다. 최근 공정 비용을 최소화와 원료 활용을 극대화를 통해 고효율 CIGS 박막형 태양전지를 제조하기 위해 비진공 방식의 전구체 박막 코팅 및 열처리를 통한 광흡수층 제조에 관한 연구가 활발히 진행되고 있으며, 본 연구는 doctor-blade coating을 이용하여 전구체 박막을 기판 위에 형성하고 열처리 온도에 따른 박막 물성 변화를 관찰함으로써 박막 형성 메커니즘을 밝히는데 주력하였다. 또한 합성된 박막의 전기적, 광학적 특성을 분석하여 태양전지 응용 가능성을 살펴보았다. 본 연구에서는 SEM, XRD, TGA 분석을 통해 Cu, In, Se 전구체들이 각각 binary phase, 즉, Cu2-xSe 및 In2Se3의 metal chalcogenide을 형성하고, 고온에서 서로 결합하여 CuInSe2로 결정화 되는 현상을 관찰하였다. 또한 합성된 CIS 박막은 근적외선 및 가시광 영역에서 높은 광흡수도를 보였으며, 전기적으로 Mo 전극과 ohmic contact을 이룸으로써 CIGS계 태양전지의 광흡수층으로의 적합성을 나타내었다.

  • PDF

Metal-Assisted Chemical Etching에 의한 InAlP표면 Texture 형성 및 반사율 변화

  • Sin, Hyeon-Uk;O, Si-Deok;Lee, Se-Won;Choe, Jeong-U;Sin, Jae-Cheol;Kim, Hyo-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.304-304
    • /
    • 2012
  • III-V 화합물 태양전지는 실리콘 등 다른 태양전지에 비해 1sun상 30% 이상의 고효율을 갖고 있고 direct bandgap과 높은 이동도 등의 물질특성과 3족과 5족의 비율 조절로 같은 결정구조에서 에너지 bandgap이 다른 물질들을 만들기에 용이하여 태양전지 스펙트럼의 넓은 영역을 흡수할 수 있는 장점이 있다. 그러나 셀 자체의 물질이 실리콘에 비하여 고가여서 고성능이 요구되는 우주 인공위성 등에 적용이 되었지만, 2000년대 이후로 집광에 적용 가능한 태양전지의 연구를 거듭하여 2005년부터는 값싼 프레넬 렌즈를 이용하여 1 sun에 비해 500배 해당하는 빛을 셀에 집광하여 보다 효율을 증가시킴으로써 지상발전용에도 적용 가능한 셀을 형성하게 되었다. 더불어 태양전지의 효율을 증가시키기 위한 다양한 구조적 변화의 시도도 많이 이루어지고 있다. 최근 실리콘 태양전지의 표면에 texture 구조를 주어 높은 흡수율과 낮은 반사율을 갖게 함으로써 효율을 증가시키는 사례가 많아지고, III-V 화합물 태양전지도 texturing에 의해 증가된 효율을 발표한바 있다. 본 연구에서는 III-V 화합물 InGaP 태양전지의 window층으로 사용되는 InAlP 층에 Metal-assisted chemical etching (mac etching) 방법으로 texture 구조를 형성하여 etching 시간에 따른 InAlP층의 표면 변화와 반사율의 변화를 분석하였다.

  • PDF

Fabrication of Doping-Free Hydrogenated Amorphous Silicon Thin Film Solar Cell Using Transition Metal Oxide Window Layer and LiF/Al Back Electrode

  • Jeong, Hyeong-Hwan;Kim, Dong-Ho;Gwon, Jeong-Dae;Jeong, Yong-Su;Jeong, Gwon-Beom;Park, Seong-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.193-193
    • /
    • 2013
  • 실리콘 박막 태양전지는 광 흡수층에서 형성된 정공과 전자를 효과적으로 분리하기 위해 p형과 n형으로 도핑된 층을 형성하는 p-i-n구조를 갖게 된다. 이러한 도핑 층을 형성하기 위해 B2H6와 PH3와 같은 독성 가스를 사용하기 때문에, 공정 안정성과 환경적인 이슈가 대두된다. 또한 도핑은 추가적으로 실리콘 박막 태양전지의 안정화 효율을 지속적으로 저하시키는 요인이 된다. 이러한 문제점을 개선하기 위하여, 창층으로 MoO3, V2O5, WO3 등과 같이 높은 일함수를 갖는 전이금속 산화물을 사용하고, 광 흡수층으로 i-Si:H을, 후면 전극으로 낮은 일함수를 나타내는 LiF/Al을 사용하였다. 전이금속 산화물과 LiF/Al의 큰 일함수 차이에 의해서 흡수층인 i-Si:H 에서 생성된 캐리어들은 효과적으로 분리되고 수집이 된다. 금속 산화물은 스퍼터링 공정에 의하여 이루어졌으며, 스퍼터링 공정조건에 따라 산화도가 조절되며, 이러한 산화도에 따라 태양전지의 셀 특성이 결정된다. 도핑 층이 없는 새로운 형태의 실리콘 박막 태양전지는 기존 비정질 실리콘 박막 태양전지에 비해 높은 안정화 효율을 나타내며, 이는 도핑 층이 없기 때문에 기존 실리콘 박막 태양전지의 열화현상에 따른 효율저하가 발생하지 않는 장점을 지내고 있다.

  • PDF

결정질 실리콘 태양전지의 전면 전극 최적화 설계에 대한 연구

  • Yu, Gyeong-Yeol;Baek, Gyeong-Hyeon;Baek, Seung-Sin;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.407-407
    • /
    • 2011
  • 태양전지에서 Fill Factor를 저하시키는 직렬저항의 성분들은 베이스저항, 에미터 저항, contact 저항, finger 저항, busbar 저항 등이 있다. 각각의 저항 성분은 전극의 width및 height, 그리고 전극과 전극 사이의 spacing을 가변함에 따라 각기 다른 값을 나타내는데, 낮은 직렬저항 값을 달성하기 위해 전극의 면적을 크게 하는 것이 바람직하지만, 이는 cell의 shading loss를 증가시켜 cell의 JSC를 저하시킨다. 그러므로 cell의 면적과 전면 에미터의 면저항을 고려하여 shading loss와 직렬저항을 최소화 하는 최적의 전면 전극의 설계가 중요하다. 본 논문에서는 시뮬레이션을 통해 전면 전극의 height, spacing 및 width를 가변하여 1 by 1, 2 by 2, 3 by 3의 cell 면적에서의 전면 전극의 설계를 최적화 하였다. 시뮬레이션 결과 각각의 cell면적에서 단위면적당 저항 값이 500 $m{\Omega}$ 이하, shading loss가 4% 미만인 전극을 설계하였다.

  • PDF