• 제목/요약/키워드: 3/2-Way Valve

Search Result 56, Processing Time 0.026 seconds

Changes in Flavor Characteristics and Shelf-life of Roasted Coffee in Different Packaging Conditions during Storage (포장 조건에 따른 저장 중 커피의 향미 특성의 변화와 보존 기간)

  • Moon, Jun-Woong;Cho, Jae-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.441-447
    • /
    • 1999
  • Changes in flavor characteristics of roasted coffee in 6 package models during storage were investigated by GC/MS analysis and sensory evaluation to establish the criteria of the shelf-life of the roasted coffee in three flavor quality-'fresh', 'satisfying' and 'minimally acceptable' levels. In direct headspace method of GC/MS, 47 volatile compounds were analyzed and the light volatile compounds were reduced sharply at initial stage of storage and faster in the package with air. The correlation between % retention of 2,3-butanedione and overall aroma of roasted coffee showed good linear-relation, of which correlation coefficient (R) were from 0.999 to 0.904 depending on package models, indicating that 2,3-butanedione would be an index chemical for evaluating the freshness of roasted coffee. In sensory evaluation of 6 package models during storage, roasted whole beans (RB) and roasted and ground (RG) coffee in air-package were preserved in 'fresh quality' for $0.5{\sim}1$ week, 'satisfying quality' for $2{\sim}3$ weeks and 'minimally acceptable quality' for 12 weeks, while roasted whole beans in valve-package and roasted and ground coffees in vacuum-package, nitrogen-package and oxygen absorbent-package were preserved in 'fresh quality' for $2{\sim}4$ weeks, 'satisfying quality' for $12{\sim}24$ weeks and 'minimally acceptable quality' for 52 weeks. The oxygen absorbent-package was slightly less effective than other three methods.

  • PDF

Analysis of adaptation character of an aroma blast device for reduction of fatigue of drivers (운전자 피로 경감을 위한 향 분사 시스템의 적응 특성 분석)

  • Chung Soon-Cheol;Min Byung-Chan;Kim Seung-Chul;Sohn Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.7 no.4
    • /
    • pp.35-41
    • /
    • 2004
  • This study addressed the development of an automobile aroma blast device to reduce fatigue of drivers. We also analyzed the adaptation character of the aroma blast device, The aroma blast device was designed in a way that volatilized aroma is mixed with oxygen (air) and blasted to the outside, It was devised to possibly change on/off time of 2-Port Solenoid Valve using the 8051 micro processor, through which the amount of aroma can be controlled, We conducted an experiment to examine time for occurrence/elimination of adaptation to aroma in 20 college students using 4 types of natural fragrances, The subjects had an average age of 22$\pm$2 years and included both men and women. The results showed that the occurrence and elimination times for adaptation to aroma were 1 minute 28 seconds and 3 minutes and 15 seconds for Jasmine 30%, 2 minutes and 41 seconds and 4 minutes and 3 seconds for Jasmine 50%, 1 minute and 47 seconds and 2 minutes and 59 seconds for Peppermint 30%, and 1 minute 59 seconds and 4 minutes and 11 seconds for Peppermint 50%, respectively.

  • PDF

Magnetoresistive Properties of Array IrMn Spin Valves Devices (어레이 IrMn 스핀밸브 소자의 자기저항특성 연구)

  • Ahn, M.C.;Choi, S.D.;Joo, H.W.;Kim, G.W.;Hwang, D.G.;Rhee, J.R.;Lee, S.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.4
    • /
    • pp.156-161
    • /
    • 2007
  • To develop array magnetic sensors, specular-type giant magnetoresistive- spin valve (GMR-SV) film of Glass/Ta(5)MiFe(7)/IrMn(10)NiFe(5)/$O_2$/CoFe(5)/Cu(2.6)/CoFe(5)/$O_2$/NiFe(7)/Ta(5)(nm) was deposited by using a high-vacuum sputtering system. One of 15 way sensors in the area of $8{\times}8mm^2$ was Patterned a size of $20{\times}80{\mu}m^2$ in multilayer sample by Photo-lithography. All of 15 sensors with Cu electrodes were measured a uniform magnetic properties by 2-probe method. The highest magnetic sensitivity of MR and output voltage measured nearby an external magnetic field of 5 Oe were MS = 0.5%/Oe and ${\triangle}$V= 3.0 mV, respectively. An easy-axis of top-free layers of $CoFe/O_2/NiFe$ with shape anisotropy was perpendicular to one of bottom-pinned layers $IrMn/NiFe/O_2/CoFe$. When the sensing current increased from 1 mA to 10 mA, the output working voltage uniformly increased and the magnetic sensitivity was almost stable to use the nano-magnetic devices with good sensitive properties.

A Study on Stability Analysis of Hydraulic System Using High Speed On-Off Valves (고속전자밸브를 사용한 유압시스템의 안정성 해석에 관한 연구)

  • 유태재
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.412-420
    • /
    • 2003
  • This study describes the merits of PWM control of hydraulic system using high speed on-off valves. Generally, Electro-hydraulic valves can be classified into two classification: valves which are controlled by analog signal and which are controlled by digital. The former includes hydraulic servo valves and proportional valves which require A/D converters as interface to digital computer and too costly and sensitive to oil contamination because of complexity in structures. The latter includes high speed on-off valves which do not require A/D converters because they are normally operated in a pulse width modulation(PWM) method, and are low in price and robust to oil contamination because of their simple structures. The objectives of this study is to analyze the limit cycle which regularly appear in the position control system using 2/2way high speed on-off valves and to give a criterion for the stability of this system. The nonlinear characteristics of PWM and cylinder friction of this system are described by harmonic linearization and the effects of parameter variations to the system stability are simulated.

Development of Unmanned Speed Sprayer(I) -Remote Control and Induction Cable System- (무인 스피드 스프레이어의 개발(I) -원격제어 및 유도케이블 시스템-)

  • 장익주;김태한;조명동
    • Journal of Biosystems Engineering
    • /
    • v.20 no.3
    • /
    • pp.226-235
    • /
    • 1995
  • An unmanned speed sprayer was developed using a remote control and an inductive cable guidance systems to protect operators and environment from hazardous pesticides. The sprayer consists of a remote control system, an induction system, obstacle detectors, control actuators and an one-chip microcomputer. The sprayer can be operated by the induction guidance and/or remote control. The following summarize characteristics of the developed speed sprayer. 1) Both the remote control and the induction guidance operation were possible with the developed speed sprayer. 2) Sixteen functions of the forwarding, backing, halting, steering, 3-way valve for nozzles and fan operating etc. were utilized on the remote control system. 3) It was concluded that the DTMF method, having less transmitting error, performed better than the FSK method for an agricultural remote controller. A radio station may be necessary. 4) The digital inductive guidance system, consisting of five low-impedance detection coils and a window comparator circuit, performed better than the analog detecting system, guiding route using inductive voltage differential from tow detection coils.

  • PDF

Development of Heating and Cooling System with Heat Pump for Nutrient Solution Bed In Greenhouse (열펌프를 이용한 양액베드 냉난방시스템 개발)

  • Kang, Geum-Chun;Kim, Yeong-Jung;Yu, Yeong-Seon;Baek, Lee
    • Journal of Biosystems Engineering
    • /
    • v.27 no.6
    • /
    • pp.565-572
    • /
    • 2002
  • In order to control the root-zone temperature of greenhouse crops in the hydroponics at hot and cold season, heat pump system for cooling and heating was built and tested in this work. The system was air-to-water type and vapour compression type. The heating and cooling mode was selected by the four way valve. Capacity of the compressor was 3.75㎾ and heat transfer area of the evaporator and the condenser were 3.05㎡ and 0.6㎡, respectively. According to the performance test, it could supply heat of 42,360 to 64,372kJ/h depending on the water circulation rate of 600 to 1,500ℓ/h, respectively, when indoor air temperature was 10∼20$\^{C}$. COP of heat pump system was 3.0 to 4.0 in the heating mode. But, COP of the cooling mode was 1.3 to 2.1 at indoor temperature of 20∼35$\^{C}$. The feasibility test in the greenhouse the developed heating and cooling system was installed, showed that the heating cost of the developed system was only about 13% of that of the conventional heating system. The heating cost of the developed system was 367won/day(electric consumption 9.7㎾h/day), while that of the conventional system was 2,803won/day(oil consumption 7.7ℓ/day) at the same heating mode.

Performance and heat transfer analysis of turbochargers using numerical and experimental methods

  • Pakbin, Ali;Tabatabaei, Hamidreza;Nouri-Bidgoli, Hossein
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.523-532
    • /
    • 2022
  • Turbocharger technology is one of the ways to survive in a competitive market that is facing increasing demand for fuel and improving the efficiency of vehicle engines. Turbocharging allows the engine to operate at close to its maximum power, thereby reducing the relative friction losses. One way to optimally understand the behavior of a turbocharger is to better understand the heat flow. In this paper, a 1.7 liter, 4 cylinder and 16 air valve gasoline engine turbocharger with compressible, viscous and 3D flow was investigated. The purpose of this paper is numerical investigation of the number of heat transfer in gasoline engines turbochargers under 3D flow and to examine the effect of different types of coatings on its performance; To do this, modeling of snail chamber and turbine blades in CATIA and simulation in ANSYS-FLUENT software have been used to compare the results of turbine with experimental results in both adiabatic and non-adiabatic (heat transfer) conditions. It should be noted that the turbine blades are modeled using multiple rotational coordinate methods. In the experimental section, we simulated our model without coating in two states of adiabatic and non-adiabatic. Then we matched our results with the experimental results to prove the validation of the model. Comparison of numerical and experimental results showed a difference of 8-10%, which indicates the accuracy and precision of numerical results. Also, in our studies, we concluded that the highest effective power of the turbocharged engine is achieved in the adiabatic state. We also used three types of SiO2, Sic and Si3N4 ceramic coatings to investigate the effect of insulating coatings on turbine shells to prevent heat transfer. The results showed that SiO2 has better results than the other two coatings due to its lower heat transfer coefficient.

Molecular Beam Epitaxial Growth of Oxide Single Crystal Films

  • Yoon, Dae-Ho;Yoshizawa, Masahito
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.508-508
    • /
    • 1996
  • ;The growth of films have considerable interest in the field of superlattice structured multi-layer epitaxy led to realization of new devices concepts. Molecular beam epitaxy (MBE) with in situ observation by reflection high-energy electron diffraction (RHEED) is a key technology for controlled layered growth on the atomic scale in oxide crystal thin films. Also, the combination of radical oxygen source and MBE will certainly accelerate the progress of applications of oxides. In this study, the growth process of single crystal films using by MBE method is discussed taking the oxide materials of Bi-Sr-Ca-Cu family. Oxidation was provided by a flux density of activated oxygen (oxygen radicals) from an rf-excited discharge. Generation of oxygen radicals is obtained in a specially designed radical sources with different types (coil and electrode types). Molecular oxygen was introduced into a quartz tube through a variable leak valve with mass flowmeter. Corresponding to the oxygen flow rate, the pressure of the system ranged from $1{\;}{\times}{\;}10^{-6}{\;}Torr{\;}to{\;}5{\;}{\times}{\;}10^{-5}$ Torr. The base pressure was $1{\;}{\times}{\;}10^{-10}$ Torr. The growth of Bi-oxides was achieved by coevaporation of metal elements and oxygen. In this way a Bi-oxide multilayer structure was prepared on a basal-plane MgO or $SrTiO_3$ substrate. The grown films compiled using RHEED patterns during and after the growth. Futher, the exact observation of oxygen radicals with MBE is an important technology for a approach of growth conditions on stoichiometry and perfection on the atomic scale in oxide. The oxidization degree, which is determined and controlled by the number of activated oxygen when using radical sources of two types, are utilized by voltage locked loop (VLL) method. Coil type is suitable for oxygen radical source than electrode type. The relationship between the flux of oxygen radical and the rf power or oxygen partial pressure estimated. The flux of radicals increases as the rf power increases, and indicates to the frequency change having the the value of about $2{\times}10^{14}{\;}atoms{\;}{\cdots}{\;}cm^{-2}{\;}{\cdots}{\;}S^{-I}$ when the oxygen flow rate of 2.0 seem and rf power 150 W.150 W.

  • PDF

An Experimental Study on Evaporation/Condensation Heat Transfer with Flow Direction in Brazed Plate Heat Exchanger using Refrigerant 410A (R410A를 이용한 브레이징 타입 판형열교환기에서 물 측 유동방향에 따른 응축/증발 성능 평가)

  • Lee, Sung-Woo;Jeong, Young-Man;Lee, Jae-Keun;Lee, Dong-Hyuk
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1096-1101
    • /
    • 2009
  • The plate heat exchanger(PHE) in heat pump has two flow streams of the refrigerant and water. The flow direction of the refrigerant, unlike that of water, can be changed by a 4-way valve depending on operating condition. Therefore the flow arrangement is a parallel flow for heating and a counter flow for cooling, respectively. In this study, the effects of the flow direction of the water on the heat transfer rate are investigated experimentally. The experiments are carried out for brazed plate heat exchangers under a parallel and counter flow conditions in evaporation and condensation. The experimental parameters in this study include the mass flux of the refrigerant 410A from 3 to $14\;kg/m^2s$ and the flow patterns for the pressure of PHE fixed at 0.97 and 2.46 MPa. The results show that both the heat transfer rate and frictional pressure drop across the PHE increase with the mass flux. The heat transfer rate of the refrigerant 410A for evaporation show great sensitivity to flow direction of the water. The heat transfer rate for evaporation with a counter flow are 5-30% higher than that with a parallel flow.

  • PDF

Self Production of Radioisotope and Radiopharmaceuticals Divider (방사성동위원소 및 방사성의약품 분주장치의 자체제작)

  • Hong, Sung-Tack;Park, Kwang-Seo;Kim, Seok-Ki;Won, Woo-Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.177-180
    • /
    • 2010
  • Purpose: As PET test came to be covered by the pay system of medical insurance (July 1, 2006) and the needs for it becoming increased for laboratory purpose, it became necessary to purchase expensive medical equipments to solve those problems. However, as most of equipments that are operated by cyclotron are very expensive as to amount from tens of millions up to hundreds of millions of won, it is difficult to purchase those equipments from the point of medical organizations. It may be possible to self manufacture those equipments with least costs if their parts functions that meets the operators demands. The Nuclear Medicine department of National Cancer Center (NCC) is trying to manufacture and use equipments that can be made with least costs, including introducing 2 medical equipments that can improves the operator's works. Materials and Methods: Example 1: Self production of radioisotope($^{18}F$) divider was fabricated. The NCC's Nuclear Medicine department acquired one acrylic panel, seven 3-way valve, tubing etc. that can be found in the market to make the main body of divider in cooperation with biomedical engineering, and placed them inside hot cell, and installed switching box outside of hot cell to make it possible to control them from outside. This main body of divider were placed in radioisotope transfer line that are manufactured in the cyclotron. Example 2: Self production of $^{18}F$-FDG automated divider was fabricated. The NCC's Nuclear Medicine department used cavro pump syringe that consists the main body of divider in cooperation with biomedical engineering, biomedical engineering developed programs that divides a certain amount. $^{18}F$-FDG automated divider is placed inside hot cell, and cable chords were used in the equipment, and then it was connected to PC outside hot cell to make it possible to control the $^{18}F$-FDG automated divider. Results: From the NCC's Nuclear Medicine department tests that were carried out from March, 2007 until now, we found out that radioisotope can be sent to radiopharmaceuticals composite module we want, and from the tests that are carried out at NCC's Nuclear Medicine department using $^{18}F$-FDG automated divider since August, 2009 it was possible to distribute radiopharmaceuticals into vial intended. Conclusion: Through the two examples above, we found out that costs can be reduced by self manufacturing expensive equipments from NCC's cyclotron room with least costs. Also, it decreased radiation exposure dose on workers, and set up problem solving processes in cooperation with lots of parties related.

  • PDF