• Title/Summary/Keyword: 3,\

Search Result 516,993, Processing Time 0.434 seconds

The Characteristics of Rural Population, Korea, 1960~1995: Population Composition and Internal Migration (농촌인구의 특성과 그 변화, 1960~1995: 인구구성 및 인구이동)

  • 김태헌
    • Korea journal of population studies
    • /
    • v.19 no.2
    • /
    • pp.77-105
    • /
    • 1996
  • The rural problems which we are facing start from the extremely small sized population and the skewed population structure by age and sex. Thus we analyzed the change of the rural population. And we analyzed the recent return migration to the rural areas by comparing the recent in-migrants with out-migrants to rural areas. And by analyzing the rural village survey data which was to show the current characteristics of rural population, we found out the effects of the in-migrants to the rural areas and predicted the futures of rural villages by characteristics. The changes of rural population composition by age was very clear. As the out-migrants towards cities carried on, the population composition of young children aged 0~4 years was low and the aged became thick. The proportion of the population aged 0~4 years was 45.1% of the total population in 1970 and dropped down to 20.4% in 1995, which is predicted to become under 20% from now on. In the same period(1970~1995), the population aged 65 years and over rose from 4.2% to 11.9%. In 1960, before industrialization, the proportion of the population aged 0~4 years in rural areas was higher than that of cities. As the rural young population continuously moves to cities it became lower than that in urban areas from 1975 and the gap grew till 1990. But the proportion of rural population aged 0~4 years in 1995 became 6.2% and the gap reduced. We can say this is the change of the characteristics of in-migrants and out-migrants in the rural areas. Also considering the composition of the population by age group moving from urban to rural area in the late 1980s, 51.8% of the total migrants concentrates upon age group of 20~34 years and these people's educational level was higher than that of out-migrants to urban areas. This fact predicted the changes of the rural population, and the results will turn out as a change in the rural society. However, after comparing the population structure between the pure rural village of Boeun-gun and suburban village of Paju-gun which was agriculture centered village but recently changed rapidly, the recent change of the rural population structure which the in-migrants to rural areas becomes younger is just a phenomenon in the suburban rural areas, not the change of the total rural areas in general. From the characteristics of the population structure of rural village from the field survey on these villages, we can see that in the pure rural villages without any effects from cities the regidents are highly aged, while industrialization and urbanization are making a progress in suburban villages. Therefore, the recent partial change of the rural population structure and the change of characteristics of the in-migrants toward rural areas is effecting and being effected by the population change of areas like suburban rural villages. Although there are return migrants to rural areas to change their jobs into agriculture, this is too minor to appear as a statistic effect.

  • PDF

Development of Formulas for the Estimation of Renal Depth and Application in the Measurement of Glomerular Filtration Rate in Koreans (사구체 여과율 측정을 위한 한국인의 신장 깊이에 관한 방정식 도출과 이용)

  • Yoo, Ie-Ryung;Kim, Sung-Hoon;Chung, Yong-An;Jung, Hyun-Seok;Lee, Hae-Giu;Park, Young-Ha;Lee, Sung-Yong;Sohn, Hyung-Seon;Chung, Soo-Kyo;Kim, Hyun-Mi;Lee, Hyung-Goo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.5
    • /
    • pp.418-425
    • /
    • 2000
  • Purpose: There is no established formula for estimating renal depths in Korean. As a result, we undertook this study to develop a new formula, and to apply this formula in the calculation of glomerular filtration rate (GFR). Materials and Methods: We measured the renal depth (RD) on the abdominal CT obtained in 300 adults (M:F: 167:133, mean age 50.9 years) without known renal diseases. The RDs measured by CT were compared with the estimated RDs based on the Tonnesen and Taylor equations. New formulas were derived from the measured RDs in 200 out of 300 patients based on several variables such as sex, age, weight, and height by multiple regression analysis. The RDs estimated from the new formulas were compared with the measured RDs in the remaining 100 patients as a control. In 48 patients who underwent Tc-99m DTPA renal scintigraphy, GFR was measured with three equations (new formula, Tonnesen and Taylor equations), respectively, and compared with each other. Results: The mean values of the RDs measured from CT were 6.9 cm for right kidney of the men (MRK), 6.7 cm for left kidney of the men (MLK), 6.7 cm for right kidney of the women (WRK), and 6.6 cm for left kidney of the women (WLK). The RDs estimated from Tonnesen equation were shorter than the ones measured from CT significantly. The newly derived formulas were 12.813 (weight/height)+0.002 (age)+ 2.264 for MRK, 15.344 (weight/height)+0.011 (age)+0.557 for MLK, 12.936 (weight/height)+ 0.014 (age)+1.462 for WRK and 13.488 (weight/height)+0.019 (age)+0.762 for WLK. The correlation coefficients of the RD measured from CT and estimated from the new formula were 0.529 in MRK, 0.729 in MLK, 0.601 in WRK, and 0.724 in WLK, respectively. The GFRs from the new formula were significantly higher than those from the Tonnesen equation significantly, which was the most similar to normal GFR values. Conclusion: We generated new formulas for estimating RD in Korean from the data by CT. By adopting these formulas, we expect that GFR can be measured by the Gates method accurately in Korean.

  • PDF

Structural and Functional Changes of The Brain in The Patient with Schizophrenia, Paranoid type : Correlation among Brain MRI Findings, Neurocognitive Function and Psychiatric Symptoms (편집형 정신분열병 환자에서 뇌의 구조적 변화와 기능적 변화 : 뇌자기공명영상소견, 신경인지기능 및 정신증상간의 상관관계)

  • Kang, Cheol-Min;Lee, Young-Ho;Jung, Young-Jo;Lee, Jung-Heum;Kim, Su-Ji;Park, Hyun-Jin
    • Sleep Medicine and Psychophysiology
    • /
    • v.5 no.1
    • /
    • pp.54-70
    • /
    • 1998
  • Objectives : The purpose of this study is to evaluate the role of structural and functional changes of the brain in the pathophysiology of schizophrenia. Methods : The authors measured the regions of interest on the magnetic resonance imaging of the brain in 20 patients with paranoid schizophrenia(15 men and 5 women) and 23 control subjects(15 men and 8 women). We also assessed the neurocognitive functions with the Wisconsin Card Sorting Test, the Benton Neuropsychological Assessment, and the Weschler IQ test-Korean version, soft neurologic signs, and psychiatric symptoms in the patient group. Results : In the patient group, all ventricles and basal ganglia including caudate nucleus and globus pallidus were significantly enlarged. Although there were no significant differences between the two groups in the values of right frontal lobe and left temporal lobe, there was a tendency of decrease in the values of right frontal lobe and left temporal lobe. There were significant positive correlations between the values of ventricles and the frequency of previous hospitalization. However, there were no significant correlations between other values of regions of interest and clinical data. The value of the right frontal lobe was significantly correlated with the score of soft neurologic signs, which is suggestive of the neurodevelopmental abnormalities. There were significant correlations between the value of frontal lobe and the scores of the various subscales of Benton Neuropsychiatric Inventory. In contrast, the value of left amygdala and putamen showed significant correlation with the score of verbal IQ on the Weschler IQ test. Structural changes of the temporal lobe areas were related with the positive and general symptom scores on PANSS, while those of the basal ganglia were related with the negative symptom scores. Conclusions : These results suggest that the structural changes of the brain in the patients with schizophrenia show the dual process, which is suggestive that the enlarged ventricle show the neurodegenerative process, while enlarged basal ganglia, and shrinked right frontal and left temporal lobe show the neurodevelopmental abnormalities. Among these changes, structural changes of the frontal lobe related with various neuropsychological deficits, while those of left temporal lobe related with language abnormality. Relative to the relation between structural changes and psychiatric symptoms, structural changes of the temporal lobe areas were related with the positive and general symptoms, while those of the basal ganglia were related with the negative symptoms.

  • PDF

The Framework of Research Network and Performance Evaluation on Personal Information Security: Social Network Analysis Perspective (개인정보보호 분야의 연구자 네트워크와 성과 평가 프레임워크: 소셜 네트워크 분석을 중심으로)

  • Kim, Minsu;Choi, Jaewon;Kim, Hyun Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.177-193
    • /
    • 2014
  • Over the past decade, there has been a rapid diffusion of electronic commerce and a rising number of interconnected networks, resulting in an escalation of security threats and privacy concerns. Electronic commerce has a built-in trade-off between the necessity of providing at least some personal information to consummate an online transaction, and the risk of negative consequences from providing such information. More recently, the frequent disclosure of private information has raised concerns about privacy and its impacts. This has motivated researchers in various fields to explore information privacy issues to address these concerns. Accordingly, the necessity for information privacy policies and technologies for collecting and storing data, and information privacy research in various fields such as medicine, computer science, business, and statistics has increased. The occurrence of various information security accidents have made finding experts in the information security field an important issue. Objective measures for finding such experts are required, as it is currently rather subjective. Based on social network analysis, this paper focused on a framework to evaluate the process of finding experts in the information security field. We collected data from the National Discovery for Science Leaders (NDSL) database, initially collecting about 2000 papers covering the period between 2005 and 2013. Outliers and the data of irrelevant papers were dropped, leaving 784 papers to test the suggested hypotheses. The co-authorship network data for co-author relationship, publisher, affiliation, and so on were analyzed using social network measures including centrality and structural hole. The results of our model estimation are as follows. With the exception of Hypothesis 3, which deals with the relationship between eigenvector centrality and performance, all of our hypotheses were supported. In line with our hypothesis, degree centrality (H1) was supported with its positive influence on the researchers' publishing performance (p<0.001). This finding indicates that as the degree of cooperation increased, the more the publishing performance of researchers increased. In addition, closeness centrality (H2) was also positively associated with researchers' publishing performance (p<0.001), suggesting that, as the efficiency of information acquisition increased, the more the researchers' publishing performance increased. This paper identified the difference in publishing performance among researchers. The analysis can be used to identify core experts and evaluate their performance in the information privacy research field. The co-authorship network for information privacy can aid in understanding the deep relationships among researchers. In addition, extracting characteristics of publishers and affiliations, this paper suggested an understanding of the social network measures and their potential for finding experts in the information privacy field. Social concerns about securing the objectivity of experts have increased, because experts in the information privacy field frequently participate in political consultation, and business education support and evaluation. In terms of practical implications, this research suggests an objective framework for experts in the information privacy field, and is useful for people who are in charge of managing research human resources. This study has some limitations, providing opportunities and suggestions for future research. Presenting the difference in information diffusion according to media and proximity presents difficulties for the generalization of the theory due to the small sample size. Therefore, further studies could consider an increased sample size and media diversity, the difference in information diffusion according to the media type, and information proximity could be explored in more detail. Moreover, previous network research has commonly observed a causal relationship between the independent and dependent variable (Kadushin, 2012). In this study, degree centrality as an independent variable might have causal relationship with performance as a dependent variable. However, in the case of network analysis research, network indices could be computed after the network relationship is created. An annual analysis could help mitigate this limitation.

Light and Electron Microscopy of Gill and Kidney on Adaptation of Tilapia(Oreochromis niloticus) in the Various Salinities (틸라피아의 해수순치시(海水馴致時) 아가미와 신장(腎臟)의 광학(光學) 및 전자현미경적(電子顯微鏡的) 관찰(觀察))

  • Yoon, Jong-Man;Cho, Kang-Yong;Park, Hong-Yang
    • Applied Microscopy
    • /
    • v.23 no.2
    • /
    • pp.27-40
    • /
    • 1993
  • This study was taken to examine the light microscopic and ultrastructural changes of gill and kidney of female tilapia{Oreochromis niloticus) adapted in 0%o, 10%o, 20%o, and 30%o salt concentrations, respectively, by light, scanning and transmission electron microscope. The results obtained in these experiments were summarized as follows: Gill chloride cell hyperplasia, gill lamellar epithelial separation, kidney glomerular shrinkage, blood congestion in kidneys and deposition of hyalin droplets in kidney glomeruli, tubules were the histological alterations in Oreochromis niloticus. Incidence and severity of gill chloride cell hyperplasia rapidly increased together with increase of salinity, and the number of chloride cells in gill lamellae rapidly increased in response to high external NaCl concentrations. The ultrastructure by scanning electron microscope(SEM) indicated that the gill secondary lamella of tilapia(Oreochromis niloticus) exposed to seawater, were characterized by rough convoluted surfaces during the adaptation. Transmission electron microscopy(TEM) indicated that mitochondria in chloride cells exposed to seawater, were both large and elongate and contained well-developed cristae. TEM also showed the increased chloride cells exposed to seawater. The presence of two mitochondria-rich cell types is discussed with regard to their possible role in the hypoosmoregulatory changes which occur during seawater-adaptation. Most Oreochromis niloticus adapted in seawater had an occasional glomerulus completely filling Bowman's capsule in kidney, and glomerular shrinkage was occurred higher in kidney tissues of individuals living in 10%o, 20%o, 30%o of seawater than in those living in 0%o of freshwater, and blood congestion was occurred severer in kidney tissues of individuals living 20%o, 30%o of seawater than in those living in 10%o of seawater. There were decreases in the glomerular area and the nuclear area in the main segments of the nephron, and that the nuclear areas of the nephron cells in seawater-adapted tilapia were of smaller size than those from freshwater-adapted fish. Our findings demonstrated that Oreochromis niloticus tolerated moderately saline environment and the increased body weight living in 30%o was relatively higher than that living in 10%o in spite of histopathological changes.

  • PDF

Growth Efficiency, Carcass Quality Characteristics and Profitability of 'High'-Market Weight Pigs ('고체중' 출하돈의 성장효율, 도체 품질 특성 및 수익성)

  • Park, M.J.;Ha, D.M.;Shin, H.W.;Lee, S.H.;Kim, W.K.;Ha, S.H.;Yang, H.S.;Jeong, J.Y.;Joo, S.T.;Lee, C.Y.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.459-470
    • /
    • 2007
  • Domestically, finishing pigs are marketed at 110 kg on an average. However, it is thought to be feasible to increase the market weight to 120kg or greater without decreasing the carcass quality, because most domestic pigs for pork production have descended from lean-type lineages. The present study was undertaken to investigate the growth efficiency and profitability of ‘high’-market wt pigs and the physicochemical characteristics and consumers' acceptability of the high-wt carcass. A total of 96 (Yorkshire × Landrace) × Duroc-crossbred gilts and barrows were fed a finisher diet ad laibtum in 16 pens beginning from 90-kg BW, after which the animals were slaughtered at 110kg (control) or ‘high’ market wt (135 and 125kg in gilts & barrows, respectively) and their carcasses were analyzed. Average daily gain and gain:feed did not differ between the two sex or market wt groups, whereas average daily feed intake was greater in the barrow and high market wt groups than in the gilt and 110-kg market wt groups, respectively(P<0.01). Backfat thickness of the high-market wt gilts and barrows corrected for 135 and 125-kg live wt, which were 23.7 and 22.5 mm, respectively, were greater (P<0.01) than their corresponding 110-kg counterparts(19.7 & 21.1 mm). Percentages of the trimmed primal cuts per total trimmed lean (w/w), except for that of loin, differed statistically (P<0.05) between two sex or market wt groups, but their numerical differences were rather small. Crude protein content of the loin was greater in the high vs. 110-kg market group (P<0.01), but crude fat and moisture contents and other physicochemical characteristics including the color of this primal cut were not different between the two sexes or market weights. Aroma, marbling and overall acceptability scores were greater in the high vs. 110-kg market wt group in sensory evaluation for fresh loin (P<0.01); however, overall acceptabilities for cooked loin, belly and ham were not different between the two market wt groups. Marginal profits of the 135- and 125-kg high-market wt gilt and barrow relative to their corresponding 110-kg ones were approximately -35,000 and 3,500 wons per head under the current carcass grading standard and price. However, if it had not been for the upper wt limits for the A- and B-grade carcasses, marginal profits of the high market wt gilt and barrow would have amounted to 22,000 and 11,000 wons per head, respectively. In summary, 120~125-kg market pigs are likely to meet the consumers' preference better than the 110-kg ones and also bring a profit equal to or slightly greater than that of the latter even under the current carcass grading standard. Moreover, if only the upper wt limits of the A- & B-grade carcasses were removed or increased to accommodate the high-wt carcass, the optimum market weights for the gilt and barrow would fall upon their target weights of the present study, i.e. 135 and 125 kg, respectively.

Rough Set Analysis for Stock Market Timing (러프집합분석을 이용한 매매시점 결정)

  • Huh, Jin-Nyung;Kim, Kyoung-Jae;Han, In-Goo
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.77-97
    • /
    • 2010
  • Market timing is an investment strategy which is used for obtaining excessive return from financial market. In general, detection of market timing means determining when to buy and sell to get excess return from trading. In many market timing systems, trading rules have been used as an engine to generate signals for trade. On the other hand, some researchers proposed the rough set analysis as a proper tool for market timing because it does not generate a signal for trade when the pattern of the market is uncertain by using the control function. The data for the rough set analysis should be discretized of numeric value because the rough set only accepts categorical data for analysis. Discretization searches for proper "cuts" for numeric data that determine intervals. All values that lie within each interval are transformed into same value. In general, there are four methods for data discretization in rough set analysis including equal frequency scaling, expert's knowledge-based discretization, minimum entropy scaling, and na$\ddot{i}$ve and Boolean reasoning-based discretization. Equal frequency scaling fixes a number of intervals and examines the histogram of each variable, then determines cuts so that approximately the same number of samples fall into each of the intervals. Expert's knowledge-based discretization determines cuts according to knowledge of domain experts through literature review or interview with experts. Minimum entropy scaling implements the algorithm based on recursively partitioning the value set of each variable so that a local measure of entropy is optimized. Na$\ddot{i}$ve and Booleanreasoning-based discretization searches categorical values by using Na$\ddot{i}$ve scaling the data, then finds the optimized dicretization thresholds through Boolean reasoning. Although the rough set analysis is promising for market timing, there is little research on the impact of the various data discretization methods on performance from trading using the rough set analysis. In this study, we compare stock market timing models using rough set analysis with various data discretization methods. The research data used in this study are the KOSPI 200 from May 1996 to October 1998. KOSPI 200 is the underlying index of the KOSPI 200 futures which is the first derivative instrument in the Korean stock market. The KOSPI 200 is a market value weighted index which consists of 200 stocks selected by criteria on liquidity and their status in corresponding industry including manufacturing, construction, communication, electricity and gas, distribution and services, and financing. The total number of samples is 660 trading days. In addition, this study uses popular technical indicators as independent variables. The experimental results show that the most profitable method for the training sample is the na$\ddot{i}$ve and Boolean reasoning but the expert's knowledge-based discretization is the most profitable method for the validation sample. In addition, the expert's knowledge-based discretization produced robust performance for both of training and validation sample. We also compared rough set analysis and decision tree. This study experimented C4.5 for the comparison purpose. The results show that rough set analysis with expert's knowledge-based discretization produced more profitable rules than C4.5.

Analysis on Factors Influencing Welfare Spending of Local Authority : Implementing the Detailed Data Extracted from the Social Security Information System (지방자치단체 자체 복지사업 지출 영향요인 분석 : 사회보장정보시스템을 통한 접근)

  • Kim, Kyoung-June;Ham, Young-Jin;Lee, Ki-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.141-156
    • /
    • 2013
  • Researchers in welfare services of local government in Korea have rather been on isolated issues as disables, childcare, aging phenomenon, etc. (Kang, 2004; Jung et al., 2009). Lately, local officials, yet, realize that they need more comprehensive welfare services for all residents, not just for above-mentioned focused groups. Still cases dealt with focused group approach have been a main research stream due to various reason(Jung et al., 2009; Lee, 2009; Jang, 2011). Social Security Information System is an information system that comprehensively manages 292 welfare benefits provided by 17 ministries and 40 thousand welfare services provided by 230 local authorities in Korea. The purpose of the system is to improve efficiency of social welfare delivery process. The study of local government expenditure has been on the rise over the last few decades after the restarting the local autonomy, but these studies have limitations on data collection. Measurement of a local government's welfare efforts(spending) has been primarily on expenditures or budget for an individual, set aside for welfare. This practice of using monetary value for an individual as a "proxy value" for welfare effort(spending) is based on the assumption that expenditure is directly linked to welfare efforts(Lee et al., 2007). This expenditure/budget approach commonly uses total welfare amount or percentage figure as dependent variables (Wildavsky, 1985; Lee et al., 2007; Kang, 2000). However, current practice of using actual amount being used or percentage figure as a dependent variable may have some limitation; since budget or expenditure is greatly influenced by the total budget of a local government, relying on such monetary value may create inflate or deflate the true "welfare effort" (Jang, 2012). In addition, government budget usually contain a large amount of administrative cost, i.e., salary, for local officials, which is highly unrelated to the actual welfare expenditure (Jang, 2011). This paper used local government welfare service data from the detailed data sets linked to the Social Security Information System. The purpose of this paper is to analyze the factors that affect social welfare spending of 230 local authorities in 2012. The paper applied multiple regression based model to analyze the pooled financial data from the system. Based on the regression analysis, the following factors affecting self-funded welfare spending were identified. In our research model, we use the welfare budget/total budget(%) of a local government as a true measurement for a local government's welfare effort(spending). Doing so, we exclude central government subsidies or support being used for local welfare service. It is because central government welfare support does not truly reflect the welfare efforts(spending) of a local. The dependent variable of this paper is the volume of the welfare spending and the independent variables of the model are comprised of three categories, in terms of socio-demographic perspectives, the local economy and the financial capacity of local government. This paper categorized local authorities into 3 groups, districts, and cities and suburb areas. The model used a dummy variable as the control variable (local political factor). This paper demonstrated that the volume of the welfare spending for the welfare services is commonly influenced by the ratio of welfare budget to total local budget, the population of infants, self-reliance ratio and the level of unemployment factor. Interestingly, the influential factors are different by the size of local government. Analysis of determinants of local government self-welfare spending, we found a significant effect of local Gov. Finance characteristic in degree of the local government's financial independence, financial independence rate, rate of social welfare budget, and regional economic in opening-to-application ratio, and sociology of population in rate of infants. The result means that local authorities should have differentiated welfare strategies according to their conditions and circumstances. There is a meaning that this paper has successfully proven the significant factors influencing welfare spending of local government in Korea.

Development of Intelligent Job Classification System based on Job Posting on Job Sites (구인구직사이트의 구인정보 기반 지능형 직무분류체계의 구축)

  • Lee, Jung Seung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.123-139
    • /
    • 2019
  • The job classification system of major job sites differs from site to site and is different from the job classification system of the 'SQF(Sectoral Qualifications Framework)' proposed by the SW field. Therefore, a new job classification system is needed for SW companies, SW job seekers, and job sites to understand. The purpose of this study is to establish a standard job classification system that reflects market demand by analyzing SQF based on job offer information of major job sites and the NCS(National Competency Standards). For this purpose, the association analysis between occupations of major job sites is conducted and the association rule between SQF and occupation is conducted to derive the association rule between occupations. Using this association rule, we proposed an intelligent job classification system based on data mapping the job classification system of major job sites and SQF and job classification system. First, major job sites are selected to obtain information on the job classification system of the SW market. Then We identify ways to collect job information from each site and collect data through open API. Focusing on the relationship between the data, filtering only the job information posted on each job site at the same time, other job information is deleted. Next, we will map the job classification system between job sites using the association rules derived from the association analysis. We will complete the mapping between these market segments, discuss with the experts, further map the SQF, and finally propose a new job classification system. As a result, more than 30,000 job listings were collected in XML format using open API in 'WORKNET,' 'JOBKOREA,' and 'saramin', which are the main job sites in Korea. After filtering out about 900 job postings simultaneously posted on multiple job sites, 800 association rules were derived by applying the Apriori algorithm, which is a frequent pattern mining. Based on 800 related rules, the job classification system of WORKNET, JOBKOREA, and saramin and the SQF job classification system were mapped and classified into 1st and 4th stages. In the new job taxonomy, the first primary class, IT consulting, computer system, network, and security related job system, consisted of three secondary classifications, five tertiary classifications, and five fourth classifications. The second primary classification, the database and the job system related to system operation, consisted of three secondary classifications, three tertiary classifications, and four fourth classifications. The third primary category, Web Planning, Web Programming, Web Design, and Game, was composed of four secondary classifications, nine tertiary classifications, and two fourth classifications. The last primary classification, job systems related to ICT management, computer and communication engineering technology, consisted of three secondary classifications and six tertiary classifications. In particular, the new job classification system has a relatively flexible stage of classification, unlike other existing classification systems. WORKNET divides jobs into third categories, JOBKOREA divides jobs into second categories, and the subdivided jobs into keywords. saramin divided the job into the second classification, and the subdivided the job into keyword form. The newly proposed standard job classification system accepts some keyword-based jobs, and treats some product names as jobs. In the classification system, not only are jobs suspended in the second classification, but there are also jobs that are subdivided into the fourth classification. This reflected the idea that not all jobs could be broken down into the same steps. We also proposed a combination of rules and experts' opinions from market data collected and conducted associative analysis. Therefore, the newly proposed job classification system can be regarded as a data-based intelligent job classification system that reflects the market demand, unlike the existing job classification system. This study is meaningful in that it suggests a new job classification system that reflects market demand by attempting mapping between occupations based on data through the association analysis between occupations rather than intuition of some experts. However, this study has a limitation in that it cannot fully reflect the market demand that changes over time because the data collection point is temporary. As market demands change over time, including seasonal factors and major corporate public recruitment timings, continuous data monitoring and repeated experiments are needed to achieve more accurate matching. The results of this study can be used to suggest the direction of improvement of SQF in the SW industry in the future, and it is expected to be transferred to other industries with the experience of success in the SW industry.

A Study on the Improvement of Recommendation Accuracy by Using Category Association Rule Mining (카테고리 연관 규칙 마이닝을 활용한 추천 정확도 향상 기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.27-42
    • /
    • 2020
  • Traditional companies with offline stores were unable to secure large display space due to the problems of cost. This limitation inevitably allowed limited kinds of products to be displayed on the shelves, which resulted in consumers being deprived of the opportunity to experience various items. Taking advantage of the virtual space called the Internet, online shopping goes beyond the limits of limitations in physical space of offline shopping and is now able to display numerous products on web pages that can satisfy consumers with a variety of needs. Paradoxically, however, this can also cause consumers to experience the difficulty of comparing and evaluating too many alternatives in their purchase decision-making process. As an effort to address this side effect, various kinds of consumer's purchase decision support systems have been studied, such as keyword-based item search service and recommender systems. These systems can reduce search time for items, prevent consumer from leaving while browsing, and contribute to the seller's increased sales. Among those systems, recommender systems based on association rule mining techniques can effectively detect interrelated products from transaction data such as orders. The association between products obtained by statistical analysis provides clues to predicting how interested consumers will be in another product. However, since its algorithm is based on the number of transactions, products not sold enough so far in the early days of launch may not be included in the list of recommendations even though they are highly likely to be sold. Such missing items may not have sufficient opportunities to be exposed to consumers to record sufficient sales, and then fall into a vicious cycle of a vicious cycle of declining sales and omission in the recommendation list. This situation is an inevitable outcome in situations in which recommendations are made based on past transaction histories, rather than on determining potential future sales possibilities. This study started with the idea that reflecting the means by which this potential possibility can be identified indirectly would help to select highly recommended products. In the light of the fact that the attributes of a product affect the consumer's purchasing decisions, this study was conducted to reflect them in the recommender systems. In other words, consumers who visit a product page have shown interest in the attributes of the product and would be also interested in other products with the same attributes. On such assumption, based on these attributes, the recommender system can select recommended products that can show a higher acceptance rate. Given that a category is one of the main attributes of a product, it can be a good indicator of not only direct associations between two items but also potential associations that have yet to be revealed. Based on this idea, the study devised a recommender system that reflects not only associations between products but also categories. Through regression analysis, two kinds of associations were combined to form a model that could predict the hit rate of recommendation. To evaluate the performance of the proposed model, another regression model was also developed based only on associations between products. Comparative experiments were designed to be similar to the environment in which products are actually recommended in online shopping malls. First, the association rules for all possible combinations of antecedent and consequent items were generated from the order data. Then, hit rates for each of the associated rules were predicted from the support and confidence that are calculated by each of the models. The comparative experiments using order data collected from an online shopping mall show that the recommendation accuracy can be improved by further reflecting not only the association between products but also categories in the recommendation of related products. The proposed model showed a 2 to 3 percent improvement in hit rates compared to the existing model. From a practical point of view, it is expected to have a positive effect on improving consumers' purchasing satisfaction and increasing sellers' sales.