• 제목/요약/키워드: 2nd-order SQUID gradiometer

검색결과 12건 처리시간 0.018초

Noise Properties of Directly-coupled Single-layer High-Tc 2nd-order SQUID Gradiometer

  • 황윤석;안종록;강찬석;이순걸;김진태
    • Progress in Superconductivity
    • /
    • 제3권2호
    • /
    • pp.163-167
    • /
    • 2002
  • We have fabricated planar-type single-layer second-order high-Tc SQUID gradiometers. The devices consisted of symmetrically designed three parallel-connected square pickup loops that were directly coupled to the SQUID. $YBa_2$$Cu_3$$O_{7}$ film was deposited on $SrTiO_3$ substrate by a PLD system and patterned into a device by the photolithography with ion milling technique. Junctions of the SQUID were either step-edge or bicrystal type. All the structures were formed on a 10 mm $\times$ 5 mm substrate. Balancing of the gradiometer was achieved by adjusting the width of the central pickup loop. The gradiometer noise was measured both inside and outside a magnetically shielded room. Details of the results will be discussed.

  • PDF

단일층 $d^2B_{z}$/dxdy SQUID 2차 미분기 설계 및 제작 (Fabrication of sing1e layer $d^2B_{z}$/dxdy second-order SQUID gradiometer)

  • 황윤석;박승문;이순걸;김인선;박용기
    • Progress in Superconductivity
    • /
    • 제4권2호
    • /
    • pp.109-113
    • /
    • 2003
  • We have developed a planar-type single layer second-order $high-T_{c}$ SQUID gradiometer, which can detect the $d^2$$B_{z/}$dxdy of the second-order field gradient. This SQUID gradiometer consists of four-way 'clover-leaf' pick-up loops and is coupled directly to a 4-junction dc SQUID in such a way that the coupling polarity of the two diagonal loops is opposite to that of the other two loops. The pickup loops are intrinsically balanced for both uniform field and the 1 st-order field gradient. The $YBa_2$$Cu_3$$O_{7}$ thin film was made by pulsed laser deposition method on $SrTiO_3$ single crystal substrate and patterned by photolithography with Ar ion milling technique. Response of this gradiometer was tested for both uniform field and the 2nd-order field gradient. Details of the design, fabrication, and results will be discussed.

  • PDF

생체신호 측정을 위한 최대의 신호 대 잡음비를 가지는 검출코일의 형태 와 자기차폐실의 최적 조합 (Optimum Combination of Pickup Coil Type and Magnetically Shielded Room for Maximum SNR to Measure Biomagnetism)

  • 유권규;이용호;강찬석;김진목;박용기
    • Progress in Superconductivity
    • /
    • 제9권1호
    • /
    • pp.45-49
    • /
    • 2007
  • We have investigated the optimum combination of the environmental noise condition and type of SQUID pickup coil in order to obtain maximum signal-to-noise ratio (SNR). The measurement probe consists of 1st order gradiometer with pickup coils of 100 mm, 70 mm, and 50 mm baseline length, a 2nd order gradiometer with 50 mm baseline, and a magnetometer. The pickup coils are fabricated by winding Nb wire on a bobbin with 200 mm diameter. Noise and heart signal of a healthy male were measured by various SQUID sensors with different types of pickup coils in various magnetically shielded rooms (MSR), and compared to each other. The shielding factors were found to be 43 dB, 35 dB and 25 dB at 0.1 Hz for MSR-AS, MSR-BS, MSR-CS, respectively. White noises were $3.5\;fT/Hz^{1/2}$, $4.5\;fT/Hz^{1/2}$ and $3\;fT/Hz^{1/2}$ for the 1st order gradiometers, the 2nd order gradiometers, and magnetometer for all MSRs. SNR of the magnetometer was up to 56 dB in MSR-AS, while the 1st order axial gradiometer with 70 mm baseline length was up to 54 dB in MSR-BS. The 2nd order axial gradiometer with 50 mm baseline length of pickup coil was found to be up to 40 dB in MSR-CS.

  • PDF

긴기저선을 가진 단일층 고온초전도 SQUID 2차미분기 (Long-baseline single-layer 2nd-order $high-T_c$ SQUID gradiometer)

  • 이순걸;강찬석;김인선;김상재
    • Progress in Superconductivity
    • /
    • 제7권1호
    • /
    • pp.6-10
    • /
    • 2005
  • We have studied feasibility of single-layer second-order $high-T_c$ SQUID gradiometers in magnetocardiography. We have measured human cardiomagnetic signals using a short-baseline (5.8 mm) single-layer second-order YBCO gradiometer in partially shielded environments. The gradiometer has an overall size of $17.6\;mm{\times}6\;mm$ and contains three parallel-connected pickup coils which are directly coupled to a step-edge junction SQUID. The gradiometer showed an unshielded gradient noise of $0.84\;pT/cm^2/Hz^{1/2}$ at 1 Hz, which corresponds to an equivalent field noise of $280\;fT/Hz^{1/2}$. The balancing factor was $10^3$. Based on the same design rules as the short-baseline devices, we have studied fabrication of 30 mm-long baseline gradiometers. The devices had an overall size of $70.2\;mm{\times}10.6\;mm$ with each pickup coil of $10\;mm{\times}10\;mm$ in outer size. As Josephson elements we made two types of submicron bridges, which are variable thickness bridge (VTB) and constant thickness bridge (CTB), from $3\;{\mu}m-wide$ and 300 nm-thick YBCO lines with a thin layer of Au on top by using a focused ion beam (FIB) patterning method. VTB was 300 nm wide, 200 nm thick, 30 nm long with Au removed and CTB 100 nm wide and 30 nm long. In temperature-dependent critical currents, $I_c(T)$, VTB showed an nonmetallic barrier-type behavior and CTB an SNS behavior. We believe that those characteristics are ascribed to naturally formed grain boundaries crossing the bridges.

  • PDF

SQUID 2차미분기 성능 평가용 균일자기장 및 2차 미분 자기장 발생원 (Sources of uniform and 2nd-order gradient fields for testing SQUID performance)

  • 이순걸
    • Progress in Superconductivity
    • /
    • 제8권2호
    • /
    • pp.152-157
    • /
    • 2007
  • Uniaxial square Helmholtz coils for testing SQUID sensors were designed and their field distributions were calculated. Optimum parameters for maximizing the uniform region in the Helmholtz mode were obtained for different uniformity tolerances. The coil system consists of 2 pairs of identical square loops, a Helmholtz pair for generating uniform fields and the other for the 2nd-order gradient fields in combination with the Helmholtz pair. Full expressions of the axial component of the field were calculated by using Biot-Savart's law. To understand the behavior of the field near the coil center, analytical expressions were obtained up to the 4th-order in the midplane and along the coil axis. The Helmholtz condition for generating uniform fields was calculated to be $d/{\alpha}=0.544505643$, where 2d is the inter-coil distance and $2{\alpha}$ is the side length of the coil square. Maximized uniform range can be obtained for a given nonuniformity tolerance by choosing $d/{\alpha}$ slightly lower than the Helmholtz condition. The pure second-order gradient field can be generated by subtracting the Helmholtz field from the field of the 2nd pair with equal magnitudes of the center fields of the two pairs. The coil system is useful for testing balance and sensitivity of SQUID gradiometers.

  • PDF

비차폐 환경에서의 고온초전도 SQUID 2차 미분기의 특성연구 (High-$T_c$ 2nd-order SQUID Gradiometer for Use in Unshielded Environments)

  • 박승문;강찬석;이순걸;유권규;김인선;박용기
    • Progress in Superconductivity
    • /
    • 제5권1호
    • /
    • pp.50-54
    • /
    • 2003
  • We have fabricated $∂^2$$B_{z}$ /$∂x^2$ type planar gradiometers and studied their properties in operation under various field conditions. $YBa_2$$Cu_3$$O_{7}$ film was deposited on $SrTiO_3$ (100) substrate by a pulsed laser deposition (PLD) system and patterned into a device by the photolithography with ion milling technique. The device consists of 3 pickup loops designed symmetrically Inner dimension and the width of the square side loops are 3.6 mm and 1.2 mm, respectively, and the corresponding dimensions of the center loop are 2.0 mm and 1.13 mm. The length of baseline gradiometer is 5.8 mm. Step-edge junction width is 3.0 $\mu\textrm{m}$ and the hole size of the SQUID loop is 3 $\mu\textrm{m}$ ${\times}$ 52 $\mu\textrm{m}$. The SQUID inductance is estimated to be 35 pH. The device was formed on a 20 mm ${\times}$ 10 mm substrate. We have tested the behavior of the device in various field conditions. The unshielded gradiometer was stable under extremely hostile conditions on a laboratory bench. Noise level 0.45 pT/$\textrm{cm}^2$/(equation omitted)Hz and 0.84 pT/$\textrm{cm}^2$/(equation omitted)Hz at 1 Hz for the shielded and the unshielded cases, which correspond to equivalent field noises of 150 fT/(equation omitted)Hz and 280 fT/(equation omitted)Hz, respectively. In spite of the short baseline of 5.8 mm, the high common-mode-rejection-ratio of the gradiometer, $10^3$, allowed us to successfully record magnetocardiogram of a human subject, which demonstrates the feasibility of the design in biomagnetic studies.

  • PDF