• Title/Summary/Keyword: 2d laser sensor

Search Result 100, Processing Time 0.022 seconds

Analysis of Optimal Pathways for Terrestrial LiDAR Scanning for the Establishment of Digital Inventory of Forest Resources (디지털 산림자원정보 구축을 위한 최적의 지상LiDAR 스캔 경로 분석)

  • Ko, Chi-Ung;Yim, Jong-Su;Kim, Dong-Geun;Kang, Jin-Taek
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.245-256
    • /
    • 2021
  • This study was conducted to identify the applicability of a LiDAR sensor to forest resources inventories by comparing data on a tree's position, height, and DBH obtained by the sensor with those by existing forest inventory methods, for the tree species of Criptomeria japonica in Jeolmul forest in Jeju, South Korea. To this end, a backpack personal LiDAR (Greenvalley International, Model D50) was employed. To facilitate the process of the data collection, patterns of collecting the data by the sensor were divided into seven ones, considering the density of sample plots and the work efficiency. Then, the accuracy of estimating the variables of each tree was assessed. The amount of time spent on acquiring and processing the data by each method was compared to evaluate the efficiency. The findings showed that the rate of detecting standing trees by the LiDAR was 100%. Also, the high statistical accuracy was observed in both Pattern 5 (DBH: RMSE 1.07 cm, Bias -0.79 cm, Height: RMSE 0.95 m, Bias -3.2 m), and Pattern 7 (DBH: RMSE 1.18 cm, Bias -0.82 cm, Height: RMSE 1.13 m, Bias -2.62 m), compared to the results drawn in the typical inventory manner. Concerning the time issue, 115 to 135 minutes per 1ha were taken to process the data by utilizing the LiDAR, while 375 to 1,115 spent in the existing way, proving the higher efficiency of the device. It can thus be concluded that using a backpack personal LiDAR helps increase efficiency in conducting a forest resources inventory in an planted coniferous forest with understory vegetation, implying a need for further research in a variety of forests.

A study on the construction of 3D image of strawberry using 2D laser displacement sensor (2차원 레이저 변위 센서를 이용한 딸기의 3차원 입체 영상 구축에 관한 연구)

  • Lim, Jongguk;Kim, Giyoung;Mo, Changyeun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.141-141
    • /
    • 2017
  • 장미과(Rosaceae)에 속하는 딸기(Fragaria ananassa Duch.)는 비타민 C가 풍부하고 독특한 향기를 갖는 과채류로서 겨울에서 봄까지의 기간 동안 대부분 생식으로 소비되고 있다. 국내에서 재배되는 품종으로는 설향, 매향, 장희 등이 있으며 품종에 따라 성분과 함량이 다양하지만 일반적으로 유기산이 많아서 신맛과 단맛이 조화로운 특징이 있다. 소비자들이 딸기를 구입할 때 딸기가 포장된 상자에 모양이 일정하고 붉은 색상이 선명한 딸기에 호감을 갖게 된다. 딸기는 품종에 따라 기준이 되는 모양이 다르기 때문에 숙련된 선별사에 의해서 대부분 육안으로 선별되고 있는 실정이다. 하지만 개인적인 선별 능력의 차이와 주관적인 판단으로 인해 규격을 벗어난 딸기가 혼입되어 전체적인 품질 등급을 떨어뜨리는 경우가 종종 발생하기도 한다. 따라서 본 연구에서는 품종별로 기준이 되는 표준 형상과 비정상적인 모양의 기형 딸기를 객관적으로 판별하여 선별할 수 있는 영상 시스템을 구축하기 위해 수행되었으며 표준이 되는 딸기의 3차원 형상을 구축하기 위해 2차원 레이저 변위 센서를 이용하여 딸기의 입체 영상을 구축하고자 하였다. 실험을 위해 사용된 딸기는 시중에서 구입한 설향 품종이었으며 2차원 레이저 변위 센서는 라인 스캔 방식으로 1회 프로파일 스캔에 1,280개의 데이터 포인터를 획득할 수 있으며 분해능은 0.095~0.17 mm이었다. 상부에 부착된 2차원 레이저 변위 센서와 하부에 놓인 딸기의 거리는 100 mm였다. 획득한 딸기의 2차원 영상은 높이 차이를 이용하여 색상 농도로 표현하였으며 이 영상을 다시 3차원 영상으로 구축하였다.

  • PDF

An experimental study on the cooling performance and the phase shift between piston and displacer in the Stirling cryocooler

  • Park, S. J.;Y. J. Hong;Kim, H. B.;D. Y. Koh;B. K. Yu;Lee, K. B.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.1
    • /
    • pp.111-117
    • /
    • 2003
  • In the design of the split type free displacer Stilting cryocooler the motion of the displacer is very important to decide the cooling capacity, which depends upon the working gas pressure, the swept volume in the compression space and the expansion space, operating frequency, the phase shift between piston and displacer, etc. In this study, Stirling cryocooler actuated by the electric farce of the dual linear motor is designed and manufactured. Cool down characteristics of the cold end with laser displacement sensor in the expander of the Stilting cryocooler is evaluated. The charging pressure was 15kg$_{f}$/$\textrm{cm}^2$ and operating frequency was 50Hz. Input power and the lowest temperature were about 32W and 67K, respectively. And, displacement of the piston is measured by LVDTs (Linear Variable Differential Transformers), displacement of thedisplacer is measured by laser optic method, and phase shift between piston and displacer is discussed. As the peak-to-peak pressure of the compressor was increased, peak-to-peak displacement of the displacer was increased. The peak-to-peak displacement of the displacer increases in the range of 0 - 64.5Hz(resonant frequency of the displacer), but decreases steeply when the operating frequency is bigger than the resonant frequency. Finally when the phase shift between displacements of the Piston and displacer is 45。, operating frequency is optimum and is decided by resonant frequency of the expander, mass and cross section area of the displacer and constant by friction and flow resistance.e.

Development of Sensor-based Motion Planning Method for an Autonomous Navigation of Robotic Vehicles (로봇형 차량의 자율주행을 위한 센서 기반 운동 계획법 개발)

  • Kim, Dong-Hyung;Kim, Chang-Jun;Lee, Ji-Yeong;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.513-520
    • /
    • 2011
  • This paper presents the motion planning of robotic vehicles for the path tracking and the obstacle avoidance. To follow the given path, the vehicle moves through the turning radius obtained through the pure pursuit method, which is a geometric path tracking method. In this paper, we assume that the vehicle is equipped with a 2D laser scanner, allowing it to avoid obstacles within its sensing range. The turning radius for avoiding the obstacle, which is inversely proportional to the virtual force, is then calculated. Therefore, these two kinds of the turning radius are used to generate the steering angle for the front wheel of the vehicle. And the vehicle reduces the velocity when it meets the obstacle or the large steering angle using the potentials of obstacle points and the steering angle. Thus the motion planning of the vehicle is done by planning the steering angle for the front wheels and the velocity. Finally, the performance of the proposed method is tested through simulation.

Development of Methane Gas Leak Detector Using Mid-infrared Ray Sensors with $3.2\;{\mu}m$ ($3.2\;{\mu}m$ 중적외선 센서를 이용한 메탄가스누출검지기의 개발)

  • Park, Gyou-Tae;Lyu, Keun-Jun;Han, Sang-In;Oh, Jeong-Seok;Kim, Ji-Yoon;Ahn, Sang-Guk;Yoon, Myung-Seop;Kwon, Jeong-Rock
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.48-52
    • /
    • 2008
  • According to extremely industrial growth, gas facilities, equipments and chemical plants are gradually increased due to incremental demands of annual amount of gases. The safety management of gases, however, is still far from their requirements. Methane, the principal ingredient of natural gas, is inflammable and explosive and is much used in factories and houses. Therefore, these gas safety management is essential. So, we, with a program of the gas safety management, hope to develop the detection system of methane gas leak using mid-infrared ray LED and PD with $3.2\;{\mu}m$. The cryogenic cooling device is indispensible at laser but needless at LED driven on the room temperature if manufacturing optical sensor with $3.2\;{\mu}m$. It, consequently, is not only possible to implement for subminiature and portable type but also able to speedily detect methane of extremely small quantities because the $CH_4$ absorption intensity at $3.2\;{\mu}m$ is stronger than that at $1.67\;{\mu}m$. Our objective of research is to prevent gas leak accidents from occurring previously and to minimize the extent of damage from them.

  • PDF

An Optical Fiber Perimeter Guard System Using OTDRs (OTDR을 이용한 광섬유 외곽경비시스템에 관한 연구)

  • Chang, Jin-Hyeon;Lee, Yong-Cheol;Shin, Dong-Ho;Oh, Sang-Gun;Lee, Jong-Youn;Jung, Jin-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12B
    • /
    • pp.1236-1243
    • /
    • 2010
  • The perimeter defense system was created and its characteristics were evaluated. It was designed to utilize the fiber sensing device, namely OTDR(Optical Time Domain Reflectometer) which has been used for the maintenance of the optical communication network. An OTDR was constituted by a pulse laser with the nature of 1310nm, +15dBm for the observation of 400 meter optical fence. The high-speed 32-bit processor(S3C2440) has applied to MPU(Main Processor Unit) which helps to improve the performance of OTDR algorithms. Consequently, the maximum error was 0.84 meter on the performance test of the 10km monitoring and the pass criteria of ${\pm}1m$ satisfied in all the sections. The alarm delay time was under 3 sec after detecting the disorder. For the case of secondary trespassing after primary trespassing, the optical switch was installed in OTDR to monitor the secondary trespassing and to measure the multi-point detection. Therefore, this paper shows that the detections of secondary trespassing and multi-point is possible by means of optical switch.

Nondestructive Diagnosis of NPP Piping System Using Ultrasonic Wave Imaging Technique Based on a Pulsed Laser Scanning System (펄스 레이저 스캐닝 기반 초음파 영상화 기술을 활용한 원전 배관 비파괴 진단)

  • Kim, Hyun-Uk;Lee, Chang-Gil;Park, Seung-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.166-173
    • /
    • 2014
  • A noncontact nondestructive testing (NDT) method is proposed to detect the damage of pipeline structures and to identify the location of the damage. To achieve this goal, a scanning laser source actuation technique is utilized to generate a guided wave and scans a specific area to find damage location more precisely. The ND: YAG pulsed laser is used to generate Lamb wave and a piezoelectric sensor is installed to measure the structural responses. The measured responses are analyzed using three dimensional Fourier transformation (3DFT). The damage-sensitive features are extracted by wavenumber filtering based on the 3D FT. Then, flaw imaging techniques of a pipeline structures is conducted using the damage-sensitive features. Finally, the pipes with notches are investigated to verify the effectiveness and the robustness of the proposed NDT approach.

A Study on The Thickness Shrinkage of Injection Molded Parts with The Variation of Injection Mold Core and Molding Materials (사출금형코어 및 성형수지 변화에 따른 두께 방향 수축률에 관한 연구)

  • Shin, Sung-Hyun;Jeong, Eui-Chul;Kim, Mi-Ae;Chae, Bo-Hye;Son, Jung-Eon;Kim, Sang-Yoon;Yoon, Kyung-Hwan;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.17-21
    • /
    • 2019
  • In this study, selective laser sintered 3D printing mold core and metal core were used to investigate the difference of the thickness shrinkage from the gate of the injection molded part at a constant interval. SLS 3D printing mold core was made of nylon-based PA2200 powder and the metal core was manufactured by conventional machining method. As the PA2200 powder material has low strength, thermal conductivity and high specific heat characteristics compared with metal, molding conditions were set with the consideration of molten temperature and injection pressure. Crystalline resin(PP) and amorphous resin(PS) with low melting temperature and viscosity were selected for the injection molding experiment. Cooling time for processing condition was selected by checking the temperature change of the cores with a cavity temperature sensor. The cooling time of the 3D printing core was required a longer time than that of the metal core. The thickness shrinkage of the molded part compared to the core depth was measured from the gate by a constant interval. It was shown that the thickness shrinkage of the 3D printing core was 2.02 ~ 4.34% larger than that of metal core. In additions, in the case of metal core, thickness shrinkage was increased with distance from the gate, on the contrary, in the case of polymer core showed reversed aspect.

Development and Performance Evaluation of Multi-sensor Module for Use in Disaster Sites of Mobile Robot (조사로봇의 재난현장 활용을 위한 다중센서모듈 개발 및 성능평가에 관한 연구)

  • Jung, Yonghan;Hong, Junwooh;Han, Soohee;Shin, Dongyoon;Lim, Eontaek;Kim, Seongsam
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1827-1836
    • /
    • 2022
  • Disasters that occur unexpectedly are difficult to predict. In addition, the scale and damage are increasing compared to the past. Sometimes one disaster can develop into another disaster. Among the four stages of disaster management, search and rescue are carried out in the response stage when an emergency occurs. Therefore, personnel such as firefighters who are put into the scene are put in at a lot of risk. In this respect, in the initial response process at the disaster site, robots are a technology with high potential to reduce damage to human life and property. In addition, Light Detection And Ranging (LiDAR) can acquire a relatively wide range of 3D information using a laser. Due to its high accuracy and precision, it is a very useful sensor when considering the characteristics of a disaster site. Therefore, in this study, development and experiments were conducted so that the robot could perform real-time monitoring at the disaster site. Multi-sensor module was developed by combining LiDAR, Inertial Measurement Unit (IMU) sensor, and computing board. Then, this module was mounted on the robot, and a customized Simultaneous Localization and Mapping (SLAM) algorithm was developed. A method for stably mounting a multi-sensor module to a robot to maintain optimal accuracy at disaster sites was studied. And to check the performance of the module, SLAM was tested inside the disaster building, and various SLAM algorithms and distance comparisons were performed. As a result, PackSLAM developed in this study showed lower error compared to other algorithms, showing the possibility of application in disaster sites. In the future, in order to further enhance usability at disaster sites, various experiments will be conducted by establishing a rough terrain environment with many obstacles.

A Polarization-based Frequency Scanning Interferometer and the Measurement Processing Acceleration based on Parallel Programing (편광 기반 주파수 스캐닝 간섭 시스템 및 병렬 프로그래밍 기반 측정 고속화)

  • Lee, Seung Hyun;Kim, Min Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.253-263
    • /
    • 2013
  • Frequency Scanning Interferometry(FSI) system, one of the most promising optical surface measurement techniques, generally results in superior optical performance comparing with other 3-dimensional measuring methods as its hardware structure is fixed in operation and only the light frequency is scanned in a specific spectral band without vertical scanning of the target surface or the objective lens. FSI system collects a set of images of interference fringe by changing the frequency of light source. After that, it transforms intensity data of acquired image into frequency information, and calculates the height profile of target objects with the help of frequency analysis based on Fast Fourier Transform(FFT). However, it still suffers from optical noise on target surfaces and relatively long processing time due to the number of images acquired in frequency scanning phase. 1) a Polarization-based Frequency Scanning Interferometry(PFSI) is proposed for optical noise robustness. It consists of tunable laser for light source, ${\lambda}/4$ plate in front of reference mirror, ${\lambda}/4$ plate in front of target object, polarizing beam splitter, polarizer in front of image sensor, polarizer in front of the fiber coupled light source, ${\lambda}/2$ plate between PBS and polarizer of the light source. Using the proposed system, we can solve the problem of fringe image with low contrast by using polarization technique. Also, we can control light distribution of object beam and reference beam. 2) the signal processing acceleration method is proposed for PFSI, based on parallel processing architecture, which consists of parallel processing hardware and software such as Graphic Processing Unit(GPU) and Compute Unified Device Architecture(CUDA). As a result, the processing time reaches into tact time level of real-time processing. Finally, the proposed system is evaluated in terms of accuracy and processing speed through a series of experiment and the obtained results show the effectiveness of the proposed system and method.