• Title/Summary/Keyword: 2G HTS conductor

Search Result 14, Processing Time 0.027 seconds

Characterization of electromechanical properties of Sn-Cu double layer stabilized GdBCO coated conductor tapes at 77 K

  • Shin, Hyung-Seop;Diaz, Mark Aangelo;Lee, Jae-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.4
    • /
    • pp.26-30
    • /
    • 2017
  • The promising characteristics of 2G high-temperature superconductor (HTS) coated conductor (CC) tapes have made it possible to apply to various electrical device applications. In this study, the mechanical and electromechanical properties of Sn-Cu double layer stabilized GdBCO CC tapes have been characterized. The stress and strain tolerances of $I_c$ in GdBCO CC tapes adopting stainless steel substrate were evaluated using $I_c$-strain measurement at 77 K under both uniaxial tension and monotonic bending conditions. The results were compared to the conventional single Cu layer stabilized CC tape. As a result, the Sn-Cu double layer stabilized GdBCO CC tapes showed somehow lower or comparable electromechanical properties as compared to the Cu stabilized CC tape ones.

Charateristics analysis of the joining of YBCO 2G HTS wire (YBCO 2G 선재간 접합 특성 연구)

  • Chang, Ki-Sung;Park, Dong-Keun;Yang, Seong-Eun;Ahn, Min-Cheol;Jo, Dae-Ho;Kim, Hyoun-Kyu;Lee, Hai-Gun;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.741-742
    • /
    • 2006
  • This paper deals with an efficient superconducting joint method between 2G high superconducting(HTS) wire, YBCO coated conductor(CC). Recently CC is one of the most promising superconducting wire due to high n-value and critical current independency from external magnetic field. It is expected to be used many superconducting application such as fault current limiter, persistent current system and cable etc. In most HTS applications, superconducting magnet is used, and it is necessary to joint between superconducting wire to fabricate superconducting magnet system. A CC tape used in this research consists of copper stabilizer, silver layer, YBCO layer, buffer and substrate. Direct joint using soldering method was inefficient due to resistance of copper, then copper lamination is removed by chemical etching method to reduce resistance between CC tapes. Jointed tapes were fabricated and tested. Transport current through jointed area and induced voltage were measured to characterize the I-V curve. Resistance between CC wire using chemical etching was compared with resistance of direct jointed tapes using soldering method in this paper.

  • PDF

Test results of a 5 kW fully superconducting homopolar motor

  • Lee, J.K.;Park, S.H.;Kim, Y.;Lee, S.;Joo, H.G.;Kim, W.S.;Choi, K.;Hahn, S.Y.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.35-39
    • /
    • 2013
  • The superconducting Homopolar motor is manufactured and tested. Homopolar motor system is simple and solid as the field coil of the motor is fixed near the stator coil without rotating system. In this paper, a 5 kW fully superconducting homopolar motor which has high temperature superconducting armature and field coils is manufactured and tested in liquid nitrogen. The critical current test results of the used 2G superconducting wire, pancake coil for rotor winding and race-track coils for armature winding are reported. Also, the test result of rotating and operating performance is presented. The operating frequency is to be 5 Hz for low-speed rotating. The developed fully superconducting Homopolar motor is the world's first.

Fabrication of SmBCO coated conductor using $CeO_2$ single buffer layer ($CeO_2$ 단일 완충층을 이용한 SmBCO 초전도테이프 제조)

  • Kim, T.H.;Kim, H.S.;Oh, S.S.;Yang, J.S.;Ko, R.K.;Ha, D.W.;Song, K.J.;Ha, H.S.;Jung, K.D.;Pa, K.C.;Cho, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.261-262
    • /
    • 2006
  • High temperature superconducting coated conductor has multi-layer structure of protecting layer/superconducting layer/buffer layer/metallic substrate. The buffer layer consists of multi layer, and the architecture most widely used in RABiTS approach is $CeO_2$(cap layer)/YSZ(diffusion barrier layer)/$CeO_2$(seed layer). Multi-buffer layer deposition required many times and process. Therefore single buffer layer deposition study reduce 2G HTS manufacture efforts. Evaporation technique for single buffer deposition method is used for the $CeO_2$ layer. $CeO_2$ single buffer film could be achieved in the chamber. Detailed deposition conditions (temperature and partial gas pressure of deposition) were investigated for the rapid growth of high quality $CeO_2$ single buffer film.

  • PDF