• Title/Summary/Keyword: 2G HTS conductor

Search Result 14, Processing Time 0.035 seconds

Development of an Optimization Program for a 2G HTS Conductor Design Process

  • Kim, K.L.;Hwang, S.J.;Hahn, S.;Moon, S.H.;Lee, H.G.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.4
    • /
    • pp.8-12
    • /
    • 2010
  • The properties of the conductor.mechanical, thermal, and electrical-are the key information in the design and optimization of superconducting coils. Particularly, in devices using second generation (2G) high temperature superconductors (HTS), whose base materials (for example, the substrate or stabilizer) and dimensions are adjustable, a design process for conductor optimization is one of the most important factors to enhance the electrical and thermal performance of the superconducting system while reducing the cost of the conductor. Recently, we developed a numerical program that can be used for 2G HTS conductor optimization. Focusing on the five major properties, viz. the electrical resistivity, heat capacity, thermal conductivity, Z-value, and enthalpy, the program includes an electronic database of the major base materials and calculates the equivalent properties of the 2G HTS conductors using the dimensions of the base materials as the input values. In this study, the developed program is introduced and its validity is verified by comparing the experimental and simulated results obtained with several 2G HTS conductors.

Investigation on stability characteristics of 2G HTS coated conductor tapes with various stabilizer thickness

  • Quach, Huu Luong;Kim, Ji Hyung;Hyeon, Chang Ju;Chae, Yoon Seok;Moon, Jae Hyung;Kim, Ho Min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.1
    • /
    • pp.19-22
    • /
    • 2018
  • The thermal and electrical properties of the conductor are critical parametersfor the design and optimization of the superconducting magnet. This paper presents simulation code to analyze electrical and thermal stability characteristics of the second generation (2G) high-temperature superconductor (HTS) by varying copper stabilizer thickness. Two types of commercial 2G HTS coated conductor tapes, YBCO and GdBCO were used in this study. These samples were cooled by Liquid Nitrogen ($LN_2$) having boiling at 77.3 K and an equivalent electrical circuit model for them is choosen and analysed in details. Also, an over-current pulse test in which a current exceeding a critical current was performed. From the simulation results, the influences of the copper stabilizer thickness on the stability characteristics of these samples are presented.

Optimization of wire construction from several 2G HTS tapes

  • Kumarov, D.R.;Sotnikov, D.;Scherbakov, V.I.;Mankevich, A.;Molodyk, A.;Sim, Kideok;Hwang, Soon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.4
    • /
    • pp.24-28
    • /
    • 2019
  • Despite the second generation HTS tapes (2G HTS tape) have limits in critical current value, scientific and electric devices require more current density day after day. These requirements are realized by using different superconducting wires that consist of 2G HTS tapes designed in various combinations. Authors of this paper have developed the numerical model for estimation of total critical current in the superconducting wire and critical current in each 2G HTS tape placed in this superconducting wire. The current drop in six 2G HTS tapes having different constructions was analyzed. The result of this research is the decrease of critical current up to 25 % for the stack of tapes and up to 5 % for the parallel tapes in the same plane. In addition, what was also made is the estimation of the current distribution by length for six 25 m 2G HTS tapes in different constructions and determination of current deviation by length of the wire.

Study on the 2G High Temperature Superconducting Coil for Large Scale Superconducting Magnetic Energy Storage Systems (대용량 에너지 저장장치용 2세대 고온 초전도 코일의 특성해석)

  • Lee, Ji-Young;Lee, Seyeon;Kim, Yungil;Park, Sang Ho;Choi, Kyeongdal;Lee, Ji-Kwang;Kim, Woo-Seok
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.157-162
    • /
    • 2015
  • Large scale superconducting magnetic energy storage (SMES) system requires very high magnetic energy density in its superconducting coils to enhance the energy capacity and efficiency of the system. The recent high temperature superconducting (HTS) conductors, so called 2G conductors, show very good performance under very high magnetic field so that they seem to be perfect materials for the large scale SMES coils. A general shape of the coil system with the 2G HTS conductor has been a tor oid, because the magnetic field applied perpendicularly to the surface of the 2G HTS conductor could be minimized in this shape of coil. However, a toroid coil requires a 3-dimensional computation to acquire the characteristics of its critical current density - magnetic field relations which needs very complicated numerical calculation, very high computer specification, and long calculation time. In this paper, we suggested an analytic and statistical calculation method to acquire the maximum magnetic flux density applied perpendicularly to the surface of the 2G HTS conductor and the stored energy in the toroid coil system. Although the result with this method includes some errors but we could reduce these errors within 5 percent to get a reasonable estimation of the important parameters for design process of the HTS toroid coil system. As a result, the calculation time by the suggested method could be reduced to 0.1 percent of that by the 3-dimensional numerical calculation.

Test result of striated HTS compact cables for low AC loss

  • Kim, Y.;Kim, W.S.;Lee, J.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.44-47
    • /
    • 2013
  • Large AC loss from the second generation (2G) high temperature superconducting (HTS) wires has been one of the major bottlenecks in power applications with HTS materials. Moreover, the large power applications also require the large current capacity from the HTS wires, which makes them produce larger AC losses. In order to reduce the AC loss from the HTS conductors with large current capacity, an HTS compact cable with some striations on the superconducting layers has been proposed. In this paper, we prepared some sample HTS compact conductors with striations, and measured their magnetization loss from the external magnetic field. We also made some slits on the superconducting layer of the HTS wire by laser cutting to reduce the aspect ratio of the superconducting layers. It would make the low eddy current loss and magnetic decoupling. Finally, the magnetization losses of the sample HTS compact conductors were measured and analyzed.

Test Result Analysis of a 1MW HTS Motor for Industry Application

  • Baik, S.K.;Kwon, Y.K.;Kim, H.M.;Lee, E.Y.;Kim, Y.C.;Park, H.J.;Kwon, W.S.;Park, G.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.2
    • /
    • pp.33-36
    • /
    • 2009
  • A 1 MW class HTS (High-Temperature Superconducting) synchronous motor has been developed. This motor is aimed to be utilized for industrial application such as large motors operating in large plants. The HTS field coil of the developed motor is cooled by way of neon thermo siphonmechanism and the stator (armature) coil is cooled by water through hollow copper conductor. This paper also describes evaluation of some electrical parameters from performance test results of our motor, which was conducted at steady state in generator mode and motor mode. Open and short circuit tests were conducted in generator mode while a 1.1 MW rated induction machine was rotating the HTS machine. Electrical parameters such as mutual inductance and synchronous inductance are deduced from these tests. Load test was done upto rating torque during motor mode and efficiency was measured at each load torque.

A Study on Lamination Property of Superconducting Coated Conductor

  • Kim, T.H.;Oh, S.S.;Ha, D.W.;Kim, H.S.;Ko, R.K.;Song, K.J.;Ha, H.S.;Yang, J.S.;Park, Y.M.;Oh, J.K.;Jung, K.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.161-162
    • /
    • 2005
  • 2G HTS coated conductor wire consists of textured substrate, buffer layer, superconduct layer, Ag cap layer, stabilizer. For practical application filed, coated conductor have mechanical and electrical stability and environment protection properties. This property Cu and stainless steel strip is laminated to Ag cap layer as stabilizer materials. Lamination process join stabilizer material strip and Ag cap layer with soldering method. we have laminated HTS with continuous dipping soldering process different stabilizer Cu and stainless steel strip and changed lamination process condition. The effect of lamination stabilizer and process condition has been investigated mechanical and electrical properties.

  • PDF

HTS high gradient magnetic separator prototype

  • Diev, D.N.;Lepehin, V.M.;Makarenko, M.N.;Polyakov, A.V.;Shcherbakov, V.I.;Shutova, D.I.;Surin, M.I.;Tagunov, E. Ya.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.1-5
    • /
    • 2018
  • A high gradient magnetic (HGM) separator prototype with the $2^{nd}$ generation high temperature superconducting (2G HTS) magnetic system operated in sub-cooled nitrogen is presently under development at NRC "Kurchatov Institute" (Moscow, Russia). The main goal of the project is an attempt to shift away from the complicated liquid helium cryostats towards simple cryocooler-based nitrogen cryogenics as much more convenient for HGM separators industrial applications. Using of commercial HTS tapes allows to get a sufficient level of magnetic fields and extraction forces with low energy consumption. The expected operational parameters of the device are 1.2-1.5 T in the empty operational gap and up to 3 T on the ferromagnetic filters. In this paper we briefly describe the design of the HTS rotary separator prototype with the horizontally oriented rotor axis and propose different types of ferromagnetic filters intended for weakly magnetic ores enrichment.

REBCO coil operation in gaseous helium and solid nitrogen

  • Diev, D.N.;Makarenko, M.N.;Naumov, A.V.;Polyakov, A.V.;Shcherbakov, V.I.;Shutova, D.I.;Surin, M.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.3
    • /
    • pp.47-50
    • /
    • 2019
  • The paper gives the results of the experiments with a model two-section REBCO solenoid cooled by either gaseous helium (GHe) or sub-cooled/solid nitrogen (SN2) in (50-77) K temperature range. The major cooling source was a single-stage cryocooler Sumitomo CH-110 with the cooling power of 175 W and 130 W at 77 K and 50 K respectively. The coil itself was not directly conduction cooled. We compare the time taken by both coolants to obtain the temperature of the magnet of about 50 K and the homogeneity of the temperature distribution within the cryostat. Test results for the coil operation in solid nitrogen together with the comparison of its critical properties in SN2 and GHe are also presented.

Research on Insulation Design of the Bushing for a 154kV Class HTS Transformer (154kV급 고온초전도 변압기용 부싱의 절연설계에 관한 연구)

  • Kwag, D.S.;Cheon, H.G.;Choi, J.H.;Kim, H.J.;Yun, M.S.;Kim, Y.S.;Kim, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.216-217
    • /
    • 2006
  • A common problem in many fields of cryogenic power engineering is to apply high voltage to cold parts of superconducting equipment. In many of these cases a bushing provides electrical insulation for the conductor which makes the transition from ambient temperature to the cold environment. The cryogenic high voltage bushing for the 154kV, 100MVA high temperature superconducting(HTS) transformer is described. The bushing is energized with the line-to-ground voltage between the coaxial center and outer surrounding conductors, in the axial direction there is a temperature difference from ambient to about 77 K. For the insulation design of cryogenic bushing, the arrangement of condenser cone and electrical insulation characteristics of GFRP, Air, $LN_2$ and $GN_2$ were discussed in this paper.

  • PDF