• Title/Summary/Keyword: 2D.3D Analysis

Search Result 9,382, Processing Time 0.046 seconds

A Trend Study on 2D to 3D Video Conversion Technology using Analysis of Patent Data (특허 분석을 통한 2D to 3D 영상 데이터 변환 기술 동향 연구)

  • Kang, Michael M.;Lee, Wookey;Lee, Rich. C.
    • Journal of Information Technology and Architecture
    • /
    • v.11 no.4
    • /
    • pp.495-504
    • /
    • 2014
  • This paper present a strategy of intellectual property acquisition and core technology development direction using analysis of 2D to 3D video conversion technology patent data. As a result of analysis of trends in patent 2D to 3D technology, it is very promising technology field. Using a strategic patent map using research of patent trend, you will keep ahead of the competition in 2D3D image data conversion market.

A Study on Structural Behavior of Composite Deck Plate using a Pre-assembled Re-bar Truss (철근 선조립형 복합 데크플레이트의 하부근 선경축소에 따른 구조적 거동 평가)

  • Yoo, Byung-Uk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.129-138
    • /
    • 2006
  • Composite deck plate using a pre-assembled re-bar truss for slab with corrugated zinc galvanized sheet iron at manufactory, is given the improvement on design, manufacture, and performance for construction work of cast-in-place reinforced concrete slab by enabling to cast concrete directly without the form work. There are two methods in analyzing composite deck : Simplified 2D analysis and 3D analysis. Although simplified 2D analysis is being used up to date, the use of 3D analysis, allowing for the vierendeel behavior of composite deck by real configuration correlating to bar reducing, is demanded. To compare the simplified 2D analysis applied to allowable stress design with 3D analysis applied to limit state design, 8 specimen are manufactured. Main variables include the depth of slab, the length of span, the diameter of bottom bar and lattice bar, and the presence of corrugated zinc galvanized sheet iron. The comparison from the experimental result and analytical result indicates that applying of simplified 2D analysis is possible for the use of D10 with bottom bar. However, it is more reasonable to apply 3D analysis which allows to indicate vierendeel behavior considered the real configuration.

A Finite Element Analysis of Elastomeric O-ring Performance and Structure when subjected to Foreign Objects (유한요소해석을 이용한 이물질이 고무오링과 구조물에 미치는 영향과 성능 연구)

  • Pack, Inseok;Rhee, Heejang;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.28-34
    • /
    • 2017
  • Elastomeric o-ring performance and structure when subjected to a foreign object is studied using finite element analysis (FEA). Elastomeric o-rings have been studied using 2D analysis for a long time. Contact pressure is an important factor in o-ring design. When contact pressure is lower than applied pressure, leaking, vibration, and noise can occur; resulting in decreased output. In this study, we compared 2D and 3D analyses of elastomeric o-rings. Similar results were shown for 2D and 3D contact pressure. However, when an o-ring encounters foreign object matter, 3D analysis is required because contact pressure in every direction needs to be considered. We determined the influence of foreign matter on o-ring performance and structure by analyzing 10 cases with different clearances in a 3D model. Therefore, an o-ring encountering foreign object matter must be analyzed in 3D with the result included in the o-ring design.

Parametric Studies of Slope stability Analysis by 3D FEM Using Strength Reduction Method (강도감소법에 의한 3차원 사면안정해석에 대한 매개변수 연구)

  • Kim, Young-Min
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.25-32
    • /
    • 2016
  • The two-dimensional (2D) analysis is widely used in geotechnical engineering for slope stability analysis assuming a plane-strain condition. It is implicitly assumed that the slip surface is infinitely wide, and thus three-dimensional (3D) end effects are negligible because of the infinite width of the slide mass. The majority of work on this subject suggests that the 2D factor of safety is conservative (i.e. lower than the 'true' 3D factor of safety). Recently, the 3D finite element method (FEM) became more attractive due to the progress of computational tools including the computer hardware and software. This paper presents the numerical analyses on rotational mode and translational mode slopes using the 2D and 3D FEM as well as 2D limit equilibrium methods (LEM). The results of the parametric study on the slope stability due to mesh size, dilatency angle, boundary conditions, stress history and model dimensions change are analysed. The analysis showed that the factor of safety in 3D analysis is always higher than that in the 2D analysis and the discrepancy of the slope width in W direction on the factor of safety is ignored if the roller type of W direction conditions is applied.

Two and Three-Dimensional Analysis Comparison of Nozzles due to Internal Pressure, Thermal Load and External Load (내부압력, 열하중 및 외부하중을 고려한 노즐의 2차원 및 3차원 해석 비교)

  • Yoon, Hyo-Sub;Kim, Jong-Min;Maeng, Cheol-Soo;Kim, Hyun-Min;Lee, Dae-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.283-291
    • /
    • 2015
  • In this paper, the two-dimensional(2D) and three-dimensional(3D) analyses have been performed in order to evaluate the structural integrities and compare 2D and 3D results for nozzles attached to cylindrical shells. Three nozzles, which are currently used in the nuclear power plant, are chosen to evaluate the structural integrities, and each nozzle is subjected to internal pressure, temperature variation and external loads. It is found that the 2D analysis for internal pressure should be performed with a factor of more than 1.5 or a stress concentration factor; 2D and 3D analysis results for temperature variation are almost similar to each other regardless of cladding; and the analysis results for external loads by WRC Bulletin 297 are more conservative than the 3D analysis results.

Additive 2D and 3D performance ratio analysis for steel outrigger alternative design

  • Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1133-1153
    • /
    • 2016
  • In this article, an additive performance ratio method using structural analysis of both 2D and 3D is introduced to mitigate the complexity of work evaluating structural performances of numerous steel outrigger alternatives in multi-story buildings, especially high-rise buildings. The combined structural analysis process enables to be the design of economic, safe, and as constructional demanding structures by exploiting the advantages of steel, namely: excellent energy dissipation and ductility. First the approach decides the alternative of numerous steel outriggers by a simple 2D analysis module and then the alternative is evaluated by 3D analysis module. Initial structural analyses of outrigger types are carried out through MIDAS Gen 2D modeling, approximately, and then the results appeal structural performance and lead to decide some alternative of outrigger types. ETABS 3D modeling is used with respect to realization and evaluation of exact structural behaviors. The approach reduces computational burden in compared to existing concepts such as full 3D analysis methods. The combined 2D and 3D tools are verified by cycle and displacement tests including comprehensive nonlinear dynamic simulations. The advantages and limitations of the Additive Performance Ratio Approach are highlighted in a case study on a high rise steel-composite building, which targets at designing the optimized alternative to the existing original outrigger for lateral load resisting system.

Performance Analysis of Linear Brake by Using Efficient 2-D Model (유효한 2차원 모델을 이용한 리니어 브레이크 성능 해석)

  • Han, Pil-Wan;Chun, Yon-Do;Lee, Ju;Lee, Kwan-Seop
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.601-607
    • /
    • 1998
  • This paper presents the efficient 2-D linear brake analysis model which can compensate the lateral leakage flux by changingng the airgap length and magneto-motive force(MMF). The linkage flux of the 2-D analysis is larger than that of 3-D analysis. This is caused by the assumption in 2-D analysis that geometric and physical values are constant along the perpendicular direction(z) to the analysis region. The equivalent MMF have been calculated from the linkage flux difference between the 2-D and 3-D analyses which are performed at zero velocity. The performances of the linear brake have been analyzed effectively by using the compensated 2-D models without using 3-D FEM.

  • PDF

2-D Field Analysis of Flat-type Motor (평판형 전동기의 2차원 자계 해석에 관한 연구)

  • Kim, Pill-Soo
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.160-165
    • /
    • 1998
  • This paper describes a method for field analysis inside the flat-type brushless DC motor using 2-D field simulator. Rigorous field analysis entail 3-D analysis. However, this analysis is not often appropriate for system designs because of the time and cost involved. For field analysis in this study, the 3-D problem is reduced to a 2-D boundary value problem by introducing a cylindrical cutting plane at the mean radius of the magnets. Independent of sizes and shapes of systems, the exact 2-D field results can be obtained with reasonable predictability.

  • PDF

Statistical analysis for RMSE of 3D space calibration using the DLT (DLT를 이용한 3차원 공간검증시 RMSE에 대한 통계학적 분석)

  • Lee, Hyun-Seob;Kim, Ky-Hyeung
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • The purpose of this study was to design the method of 3D space calibration to reduce RMSE by statistical analysis when using the DLT algorithm and control frame. Control frame for 3D space calibration was consist of $1{\times}3{\times}2m$ and 162 contort points adhere to it. For calculate of 3D coordination used two methods about 2D coordination on image frame, 2D coordinate on each image frame and mean coordination. The methods of statistical analysis used one-way ANOVA and T-test. Significant level was ${\alpha}=.05$. The compose of methods for reduce RMSE were as follow. 1. Use the control frame composed of 24-44 control points arranged equally. 2. When photographing, locate control frame to center of image plane(image frame) o. use the lens of a few distortion. 3. When calculate of 3D coordination, use mean of 2D coordinate obtainable from all image frames.

2D SUB-3D STM Approach for Design and Analysis of 3D Structural Concrete (3D 콘크리트 부재의 해석 및 설계를 위한 2D SUB-3D STM 방법)

  • 윤영묵;김승억;오진우;박정웅
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.415-420
    • /
    • 1998
  • In this paper, 2D SUB-3D STM approach for analysis and design of 3D structural concrete is presented. In the approach several 2D sub strut-tie models which are representations of compressive and tensile stress flows of each projected plane of 3D structural concrete are utilized in the sketch of a 3D strut-tie model, in the evaluation of effective strengths of compressive concrete struts, and in the verification of geometric compatibility and bearing capacity of critical nodal zones of 3D strut-tie model. To prove the validity and rationality of the suggested approach, the behavior and strength of a prestressed box girder diaphragm tested to failure are evaluated.

  • PDF